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Abstract. The internal space for a molecule, atom, or otlvrody system can be conveniently
parametrized by/8— 9 kinematic angles and three kinematic invariants. For a fixed set of kinematic
invariants, the kinematic angles parametrize a subspace, called a kinematic orbitndidtig
internal space. Building on an earlier analysis of the three- and four-body problems, we derive the
form of these kinematic orbits (that is, their topology) for the genetlabdy problem. The case

n = 5 is studied in detail, along with the previously studied cases3, 4.

1. Introduction

The group of kinematic rotations, called here the kinematic group, is an important set of
symmetries for the-body kinetic energy. In fact, the kinematic group, to be defined precisely
below, is the largest (compact, connected) group of such symmetries acting ebdtuy
internal space. Not surprisingly then, the orbits (see appendix A of [1]) of the kinematic
group provide a useful decomposition of the internal space. It is the purpose of this paper to
analyse these orbits and to determine their topology. We have been motivated by molecular
applications, but the results are quite general and could be applied islzogy system with
rotational invariance, such as atoms or nuclei.

Although many reasons exist to study kinematic rotations and their orbits, our current
motivation derives from an interest in body-frame singularities and their implications for the
quantum dynamics of-body systems. In two previous papers [1, 2], body-frame singularities
in the three- and four-body problems were studied explicitly. The definition of body-frame
singularities, their inevitability, the flexibility one has in moving them and their importance
for quantum dynamics are all discussed in [1, 2]. A detailed study of frame singularities has
also been made by Pack [3]. Our earlier analysis of body-frame singularities (especially the
singularities of the principal axis and related frames) involved extensive use of kinematic
rotations. The present paper extends the analysis of kinematic rotations to arbiady
provides the basis for a future discussion of frame singularities for the genleaoaly problem.
Although this paper concentrates on kinematic orbits in their own right, for motivational
reasons, we provide a brief two-paragraph account of frame singularities, referring to [1-3]
for greater detalil.

An early and necessary step in many quantutbbody computations is choosing a set of
body-fixed axes, that is, a body frame. The principal axis frame, in which the body-fixed axes
are aligned with the principal axes, is one common choice. The body frame is a function of the

0305-4470/00/071395+22$30.00 © 2000 IOP Publishing Ltd 1395



1396 K A Mitchell ard R G Littlejohn

shape of the system, by which we mean the positions of the bodies relative to each other; the
shape may be parametrized by-36 internal coordinates. As has been noted previously [1-3],

a body frame may fail to be a smooth function of shape, and thus there may be points in the
internal, or shape, space atwhichitis singular. (In this paper, the internal space and shape space
are synonymous.) For example, in the three-body problem, the principal axis frame is singular
at all oblate symmetric tops (among other shapes), and in the four-body problem, the principal
axis frame is singular at all symmetric tops (among other shapes). Body-frame singularities
have important consequences for the form of the quantum wavefunction: roughly speaking,
the wavefunction has singularities matching those of the body frame. An understanding of
body-frame singularities is therefore critical for understanding the singularities ofioey
wavefunction.

The location of the body-frame singularities in shape space depends on the choice of body
frame; by choosing different frames one can move these singularities about or possibly remove
them altogether (as is essentially the case for the three-body problem [2, 3]). Thus, for many
problems one can choose a frame whose singularities are outside the physically relevant region
of shape space. This is true of small vibration problems (about a non-collinear equilibrium)
in which the wavefunction is localized around an equilibrium shape. However, for scattering
states and delocalized bound states, it becomes harder to eliminate the singularities from the
region of interest. For certain regions, it becomes topologically impossible to remove them
completely and one must then understand their effects.

Though the study of kinematic orbits is developed here with the ultimate intent of
developing a deeper understanding of frame singularities, several other reasons motivate our
work. First, since the kinematic group is the largest (compact, connected) group of symmetries
(ofthe kinetic energy) acting on shape space, the kinematic orbits provide an important foliation
of shape space with which to study the kinetic energy operator. Furthermore, this foliation
suggests a convenient method of defining internal, or shape, coordinates [4—11]: three internal
coordinates are chosen to be kinematic invariants (for example, the three principal moments of
inertia), which label a particular kinematic orbit, and the remaining 3 internal coordinates
are chosen to be kinematic angles, which parametrize the position along the kinematic orbit.
Defining these angles and properly specifying their ranges requires a clear understanding
of the topology of the orbits. Finally, certain large-amplitude internal motions, such as
pseudorotations, can be approximated by kinematic rotations. For such systems, it may be
convenient to restrict the region of physical interest to a single kinematic orbit.

The kinematic group is commonly viewed as the set of discrete transformations between
different conventions for Jacobi vectors. Here, however, we define the kinematic group to
be a continuous symmetry group, ham8Ii9 (n — 1), which contains these transformations.

The elements of the kinematic grod® (» — 1) are called kinematic rotations to distinguish
them from the ordinary externdlO (3) rotations. (Sometimes the terminology ‘democracy
transformations’ and ‘democracy group’ is used.) Kinematic rotations act (in the active sense)
on the Jacobi vectors as shown in equation (2.3), from which one sees that they commute with
external rotations (as shown in equation (2.1)). Therefore, kinematic rotations do indeed have
a well defined action on the shape of abody system. It is the orbits of this action of the
kinematic rotations, for arbitrany, which we compute here.

As examples of our general analysis, we specialize to the three- and four-body problems,
recovering the previously known results found in [1, 2, 12]. The kinematic orbits for the three-
and four-body cases do not exhibit the full range of diversity found in the gendraty
problem and are thus somewhat special. For example, in the four-body problem the kinematic
orbits can be classified by whether a shape is an asymmetric top, a symmetric top or a spherical
top, aclassification which does not hold in the geneflabdy case. We therefore also specialize
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to the five-body problem, for which the results are not previously known. As with the three-and
four-body problems, the kinematic orbits for the five-body problem have particularly simple
forms. However, there are seven classes of kinematic orbits, which is representative of the
generak-body case.

The approach and methods used in this paper are geometrical in nature. We assume
familiarity with the techniques of [1, 2] and some basic understanding of Lie groups, their
actions on manifolds, and the quotients by such actions. Appendix A of [1] provides a useful
review, as do many basic texts [13, 14].

The structure of the paper is as follows. Section 2 contains the principal derivations,
in which we determine the isotropy subgroup of the kinematic action on shape space. This
subgroup is related to the kinematic orbit via equation (2.5). The results of section 2 are
summarized in table 1. The results for arbitrargire discussed briefly in section 3 where we
focus primarily on the collinear shapes. In section 4 we specialize the results of section 2 to the
three- and four-body problems, and these results are summarized intables 2 and 3. Similarly, in
section 5, we specialize to the five-body problem. This requires substantially more work than
the three- and four-body cases which causes section 5 to constitute almost half of the paper.
The five-body results are summarized in table 4. Our conclusions are given in section 6. We
also include an appendix containing three important theorems on the actions of Lie groups.

2. The topology of kinematic orbits for arbitrary n

In the centre-of-mass frame, the configuration ofidoody system is parametrized by 1
(mass-weighted) Jacobi vectors,, « = 1,...,n — 1. Here, thes subscript indicates that
the components af, are referred to a space-fixed frame. Jacobi vectors are a standard topic
and we refer to the literature for more details on their definition and analysis [15, 16]. For
notational convenience we also introduce the & — 1) matrix F;, whose columns are the
Jacobi vectors. ExplicitlyFy;, = ryoi,i = 1,2,3,0 =1,...,n — 1, whereF;, andr,,; are
the components df, andr,,, respectively.

An ordinary rotatiorQ € SO (3) acts on the Jacobi vectors by standard multiplication on
the left

Tsa H> QPyg (2.1)

Fs — QF;. (2.2)
We call such a rotation an external rotation to distinguish it from a kinematic rotation. A
kinematic rotatiork € SO (n — 1) acts by mixing up the: indices of the Jacobi vectors,,

Tsa > Z Kaﬁrsﬁ (23)
B

Fy > FKT (2.4)

where K4 denotes the components &fand 7 denotes the matrix transpose. Note that
kinematic rotations commute with all external rotations. Thus, the kinematic group has a well
defined action on the quotient of configuration spRé&3 by the groups 0 (3) of external
rotations. This quotient is called shape space, or the internal space, and its elements are called
shapes. A shape thus determines the relative positions of the bodies with respect to each other.
The purpose of this section is to find the topology of the orbits of the kinematic group acting
on shape space.

Considering a specific configurati®h with shapey, the kinematic orbil" throughg is
given by (that is, diffeomorphic to)

SO —1)

r=-—s— (2.5)
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whereS C SO (n — 1) is the isotropy subgroup of the kinematic actioy aSee theorem 1 in
the appendix. The isotropy subgrofigonsists of alk € SO (n — 1) which leave the shapg
invariant. Our objective therefore is to determifiéor each shapg. Now, F,K” andF, have
the same shape if and only if they are related by a rota@i@nS O (3). Thus, our objective is
tofind allk € SO(n — 1) such that there exists@ e SO (3) satisfying

F,KT = QF,. (2.6)
We use the principal value decomposition to factpinto
Fy = RAHT (2.7)

whereR € SO(3) andH € SO(n — 1), andA is a 3x (n — 1) matrix of the form

n—4
—
A 0 0] 0 0O O ...
A=| 0 » 0|00 o0 .. | (2.8)
0O 0 A3/ 0 O O

Due to the non-uniqueness of the principal value decomposition, there is no loss of generality
in assuming that,, A, > 0 and that the.;'s are ordered as

A1 2 A2 = [Ag]. (2.9

Using equation (2.7), we recast the problem of satisfying equation (2.6) into the following
problem: for whichk € SO (n — 1) does there exist@ € SO(3) such that

QAHTKH)T = A. (2.10)

The above equation shows that the isotropy subgHopthe action of the kinematic group

on the shape is conjugate to the isotropy subgroup of the action of the kinematic group on
the shape of the configuratidh ReplacingS by a conjugate subgroup in equation (2.5) does
not affect the resulting manifolfl (up to a diffeomorphism). Thus, we assume without loss
of generality that, = A, and hence we look to find &tl € SO (n — 1) such that there exists
aQ € SO(3) satisfying

QAKT = A. (2.11)

The answer depends on the rank/gfwhich we denote byl. The quantityd physically
represents the dimensionality of the shapeThus, thern-body collision hasi/ = 0, linear
shapes havé = 1, planar shapes have= 2 and full three-dimensional (3D) shapes have
d=3.

For all values of/, A may be ‘block-diagonalized’ in the following manner:

(2.12)

whereX is ad x d diagonal matrix and represents the zero matrices of the appropriate
dimensions. Equation (2.11) can only be satisfied &ndK are also block-diagonal, having

the forms
A|O
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Q= [%%} (2.14)

whereC andA ared xd matricespisa(3—d) x (3—d) matrixandBisan(n—1—d) x (n—1—d)
matrix. Finding (special) orthogonal matricksand Q satisfying equation (2.11) is then
equivalent to finding orthogonal matricasB, C, D satisfying

cxAl =% (2.15)
detAdetB =1 (2.16)
detCdetD = 1. (2.17)

The first equation follows from equation (2.11). The last two equations ensurg t#ratQ
have a positive determinant.

It can be shown, due to the fact tfBts invertible andA, C € O (d), that equation (2.15)
can only be solved i€ = A. This in turn allows equation (2.17) to be rewritten as

detAdetD = 1. (2.18)

Recall thaD is of dimension 3-d. Therefore, it/ = 3, the matrixD is completely eliminated
from consideration, and equation (2.18) becomes simply

detA = 1. (2.19)

However, ifd < 3, then there always exists an orthogonal marisuch that deb = detA.
Thus, equation (2.18) imposes no constraint whatsoevér on
For the sake of clarity, we now summarize the problem at hand. For an arbitrary diagonal
d x d matrix X, with non-zero eigenvalues, i = 1, ..., d satisfying equation (2.9), we seek
all matricesk € SO(n — 1) given by equation (2.13), where the orthogosiat d matrix A
and orthogonaln — 1 — d) x (n — 1 — d) matrix B satisfy

ATAT = X% (2.20)
detAdetB =1 (2.21)
detA =1 (required ford = 3 only). (2.22)

Note that we have eliminated all reference to the magrix
To proceed we consider each of the valuedg ef 0, 1, 2, 3 separately.

Cased =3

From equations (2.21) and (2.22), we see thatadet detB = 1. Thus,B is an element
of SO(m — 4) and is independent &. To find the allowed values of, we consider three
subcases: (i) all of thig;'s are distinct, (ii) two of the.;’s are equal, the third is distinct, (iii) all
of the A;'s are equal. Physically, these subcases correspond to shapes which are asymmetric
tops, symmetric tops and spherical tops, respectively.

Assume subcase (i). This is perhaps the most important class of shapes since three-
dimensional asymmetric tops are generic in shape space. From equation (2.20) and the fact
thatX is diagonal A must be one of the four matrices in the groip where

1 0 O 1 0 O -1 0 O -1 0 O
Vo= o 1 O0|,[ O -1 0 |, o 1 0 |, 0O -1 0 .
0 0 1 0 0 -1 0O 0 -1 0O 0 1

(2.23)
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The groupV, is called the viergruppe. It played a critical role in earlier analysis of the four-
body problem [1, 12]; we will reproduce part of this earlier analysis in section 4. Klu®s
in a subgroup o8O (n — 1) isomorphic toV, x SO(n — 4). The groupV, x SO(n — 4) is
therefore the isotropy subgroufor three-dimensional asymmetric tops.

Assume subcase (ii). Sin@ is diagonal with two equal eigenvalugsmust be block-
diagonal, with a Z 2 block which can be any eleme®ite O(2) and a 1x 1 block which must
be detS to ensure the condition dat= 1. Thus,A lives in a subset of O (3) isomorphic to
0 (2) and henc@® (2) x SO (n—4) is the isotropy subgrougfor three-dimensional symmetric
tops.

Assume subcase (iii). Since all eigenvaluesiofire equal X is proportional to the
identity. HenceA can be any element 6fO (3), and hence& O (3) x SO (n —4) is the isotropy
subgroups for three-dimensional spherical tops.

Cased =2

We consider two subcases: @) # Ag, (i) A1 = Ap. Physically, these correspond to
asymmetric and symmetric tops, respectively.

Assume subcase (i). Sin&is diagonal with two different eigenvalues,must be one
of the four matrices in the grouy,;, where

N A A

This is another representation of the viergruppe in equation (2.23). For notational simplicity,
we use the same symbol for both groups; it will be clear from the context which group
is intended. Sinc € O — 3), the matrixK is in V4 x O(n — 3). We still must
apply that remaining constraint given by equation (2.21). For this reason, we introduce the
notationV, xget+1 O (n — 3) for all elements inV; x O (n — 3) with unit determinant. Thus,
V4 X get+1 O (n — 3) is the isotropy subgrouf for two-dimensional asymmetric tops.

Assume subcase (ii). Sin&is diagonal with two equal eigenvaluésjs proportional to
the identity. Thus the matrix can be any element @ (2), and hence (2) xget+1 0 (n — 3)
is the isotropy subgroug for planar symmetric tops.

Cased =1

SinceA is in O(1), A is either 1 or—1. From equation (2.21)A = detB. Therefore,
B € O(n — 2) completely determines. Thus,0 (n — 2) is the isotropy subgrou§ for linear
shapes.

Cased =0

Since the dimension & is 0 here, there is really no matrixto worry about. That i = B.
Thus,SO(n — 1) is the isotropy subgrouf for thern-body collision.

3. Comments on the general results

We summarize the results from the preceding section in table 1 and comment on a few special
cases. First, as was to be expected, the kinematic orbit passing throughadyg collision is
a single poinl" = SO(n — 1)/SO(n — 1) = {0}.
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Table 1. Isotropy subgroups of the kinematic action on shape space.

Class Physical description of class  Isotropy subgr®up  dim(I")2

3(i) 3D asymmetric top Vax SO —4) 3n—-9
3(ii) 3D symmetric top 0(2) xSO(n —4) 3n—10
3(iii) 3D spherical top SO3) x SO(n—4) 3n—12
2(i) Planar asymmetric top V4 Xdet+10(n — 3) 2n—5
2(ii) Planar symmetric top 0(2) Xdet+10(n—3) 2n—6
1 Linear shape On—2) n—2

0 n-body collision SO(n -1 0

aT = kinematic orbit= SO(n — 1)/S.

A more interesting case is that of the collinear shapes. It is a well known fact that

SOUrD _ g pe (3.1)
0k)

where R P* is the k-dimensional real projective spack ¢ 1). Thek-dimensional real
projective space is the space of linesRf*. It may also be viewed as thedimensional
spheres* with antipodal points identified. A quick proof of equation (3.1) can be given with
the aid of theorem 1, taking

M =RPF = {{é,—é}|lé = (é1, ..., &) € S C R (3.2)

andG = SOk +1). A matrix K € SOk + 1) maps{e, —e} into {Ke, —Ke}. If
e = (1,0,...,0), then one can see that the isotropy subgroupeof-e} is H = O(k).
(In fact, H is exactly the same representation®tk), k = n — 2, discussed above for the
cased = 1.) Since the orbit of the action &fO (k + 1) on RP* is the entire spac® P*,
equation (3.1) follows from theorem 2 of the appendix.

Applying equation (3.1), we see that the kinematic orbit of a collinear shape is

_S00-Y _ppi-z (3.3)
Oo(n—2)

For the four-body problem (in three dimensions) the two-fragment exit channels can be
visualized as seven pairs of antipodal points$nor, equivalently, seven points dRP?

[1,17]. Kinematic angles between these points were computed explicitly in [17]. These results
were based on the understanding tRa? is the kinematic orbit for collinear shapes in the
four-body problemt. (The interest in collinear shapes stems from the fact that a two-fragment
state becomes more and more collinear as the separation between the fragments increases.)
The four-body work was an extension of well known results for the three-body problem (in
three dimensions) in which the two-fragment exit channels can be visualized as three points
on a circles = RP?! with certain kinematic angles between them. The result presented in
equation (3.3) shows that, in general, the two-fragment exit channels can be viewed as points
on RP"~2, or equivalently, pairs of antipodal points ¢ti—2. (Some quick combinatorics

gives the number of points dRP"~? to be 2-1 — 1.) Of course, this is only a topological

result, and we say nothing about the values of the kinematic angles between such points.

t More precisely, the analysis of [17] is based on the factthitthe kinematic orbit for shapes in the one-dimensional
four-body problem. We ignore the one-dimensionddody problem in this paper.
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4. The three- and four-body problems

We specialize the preceding analysis to the three- and four-body problems. These cases have
been studied previously [1, 2, 12]. The present analysis serves both as a check on the general
results in section 2 and as practice for the five-body problem.

We begin with the three-body problem= 3. In the analysis of section 2 we assumed
for convenience that > 4. However, by closely examining this analysis, one sees that
the results presented in table 1 are also valid for= 3, so long as one ignores the
nonsensical results for the three-dimensional classes 3(i)—(iii). For classes 2(i) and (ii), the
factorO(n — 3) = 0(0) of S is to be ignored. Thus, the isotropy subgroup of class 2(i) is
the two-element group = Z, consisting of those elements Bf in equation (2.24) with unit
determinant. Similarly, the isotropy subgroup of class 2(i§@(2). For class 1, the isotropy
subgroup isS = 0(1) = {+1, —1} = Z,. These results are summarized in table 2.

Table 2. Isotropy subgroups and kinematic orbits for the three-body problem.

Class  Physical description of class § dim@T) Tr?
2(i) Planar asymmetric top Zo 1 st
2(ii) Planar symmetric top So@2 O {0}
1 Linear shape Zo 1 st
0 Three-body collision So®@2 0 {0}

aT = kinematic orbit= SO (2)/S.

Since the kinematic groufO (2) is particularly simple, the topology of the kinematic
orbits may be presented in a more direct and illuminating form than the qust@¢®)/S.

These forms are recorded in the rightmost column of table 2. For the three-body problem,
we can provide a convenient picture of the kinematic rotations which explains why the
kinematic orbits have the topologies that they do. The three-body shape space is conveniently
parametrized by three internal coordinates, w,, w3) with ranges—oco < wq, wy < 00,

0 < w3 < oo. The kinematic rotations act on shape space via stansi@n@®) matrices
rotating about thevz-axis. It so happens that thg-axis consists of the planar (hon-collinear)
symmetric tops as well as the three-body collision. Thus, the kinematic orbits of these shapes
contain a single point, whereas the kinematic orbits of all other shapes are circles about the
w3z-axis.

Turning to the four-body problem, we specialize the entries of tablerl fort and display
the results in table 3. For classes 3(i)—(iii)) we ignore the fastxn — 4) = SO (0). For
classes 2(i) and (ii), the fact@? (n — 3) reduces ta) (1) = {+1, —1}. Since the choice of +1
or—1in O(1) is fixed by the det= +1 constraint, the isotropy subgroup for classes 2(i) and (i)
areV, and O (2), respectively. An interesting observation is that the results for the four-body
problem are classified solely on the basis of the symmetries of the moment-of-inertia tensor.
That is, the topology of the kinematic orbit depends only on whether a shape is a spherical,
symmetric, or asymmetric top. (This fact is not trueffioe 3 orn > 5.)

In the final column of table 3, we have again represented the topologies of the kinematic
orbits in a more direct and illuminating form than simply the quoti€t(3)/S. We have
already explained in section 3, how the equality(3)/ 0 (2) = RP? comes about. Thus, the
only orbit which requires special attention here is

_S0(® SU@ S°
Ve Vg Vg

r (4.1)
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Table 3. Isotropy subgroups and kinematic orbits for the four-body problem.

Class  Physical description of class S dimT) 1@
3(i) 3D asymmetric top Va 3 S3/ Vg
3(3i)) 3D symmetric top 0(2) 2 RP?
3(iii) 3D spherical top So@® O {0}
2(i) Planar asymmetric top Va 3 53/ Vg
2(ii) Planar symmetric top 0(2) 2 RP2
1 Linear shape 0Q) 2 RP2
0 Four-body collision SO@B3) 0 {0}

aT = kinematic orbit= SO(3)/S.

Here Vg is an eight-element subgroup 8/ (2)

Vg = {&I, w1, Tw)y, w3} 4.2)
wherew; = —io;, i = 1, 2, 3, and thes;’s are the usual Pauli matrices. Explicitly,

w1 = —ioy = Bi Bi } (4.3)

wy = —iop = : 2 _01 :| (4.4)

w3 = —ioz = : _OI ? ] (4.5)

The matricesy; satisfy

wiw2 = —Waw1 = W3 (4.6)
Wow3 = —W3Wr = W1 4.7)
w3w) = —W1W3 = W2 (4.8)
a)IT = wi_l = —w;. (4.9)

These product rules show theg is the quaternion group. To prove equation (4.1) we recall
some basic facts abostO(3). First, SU(2) is the double cover of O (3), and we denote
the projection byr : SU2) — SO(3). The kernel ofr is Z, = {I, —1} and hence
SOR) = SU2)/Z,. If R = n(U) for someU € SU(2), thenR can be given explicitly
by

Rij = —% tr(wiijUT) (410)

whereR;;, i, j = 1,2, 3, are the components 8f Using the product rules equations (4.6)—
(4.9) and equation (4.10), one can verify th@Vg) = V, given in equation (2.23), and hence
V4 = Vg/Z,. We now employ theorem 3 from the appendix, With= Vg, H = Z, = {I, —1},

M = SU(2). (Itis trivial to verify thatZ, is normal inVg.) Hence, equation (A.7) yields

S0B)  SUR/Z, SU@R _S°
Vo  Ve/Zo Vs Vg

(4.11)

where we recall tha§U (2) is diffeomorphic to the three-dimensional sph&fe
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Table 4. Isotropy subgroups and kinematic orbits for the five-body problem.

Class  Physical description of class S dimT) 12

3(i) 3D asymmetric top Va 6 83 x (83/ V)
3(i)) 3D symmetric top 0 5 $3 x RP?
3(iii) 3D spherical top 50(3) 3 s8

2(i) Planar asymmetric top Va Xdet+10(2) 5 RP3 x RP?
2(ii)  Planar symmetric top 0(2) Xget+10(2) 4 (82 x §%)/Z,
1 Linear shape 0(3) 3 RP3

0 Five-body collision SO4) 0 {0}

aT = kinematic orbit= SO (4)/S.

5. The five-body problem

The entries of table 1 are specialized for the five-body probtem 5, and displayed in table 4.
As with the three- and four-body cases, we also represent the topology of the kinematic orbits
in a more direct and illuminating form than the original quotiEnt SO (4)/S.

Before deriving the results in table 4, we make a few observations. First, for all classes but
2(ii) we present the kinematic orbits as products of well studied two- and three-dimensional
manifolds. In fact, all of these simpler manifolds already appear in the four-body problem,
either as kinematic orbits or as the group manit®@(3) = RP3. One obvious advantage of
such a simple description of the topologies of these spaces is that it simplifies the introduction
of kinematic angles or some other parametrization of the orbits. For example, in the case of
a 3D asymmetric top, we may introduce six kinematic angles by taking three to be standard
Euler angles or5® = SU(2) and three to be Euler angles 6/ Vs. The ranges of the latter
three angles must be carefully restricted to account for the facS#iat is only one-eighth
the size ofs®. A discussion of the ranges of such angles has already been given in the context
of the four-body problem [11, 12, 18, 19]. Of course, the sp#iyé/s can be parametrized in
various other ways, such as the convenient coordirategty, 12, 13) suggested by Reinsch
[1,20].

It is interesting to note that the kinematic orbit of a collinear shafeAs = SO (3). A
point on such an orbit (such as one of the two-fragment exit channels discussed in section 3) can
therefore be identified with a rotation matrix and may, in turn, be parametrized by one of the
many standard parametrizations$ (3) (Euler angles, axis-angle variables, Cayley—Klein
parameters, etc).

We proceed now to derive the results of table 4.

5.1. The projectionr from SU(2)x SU(2) to SO(4)

With the four-body problem, we have found it useful to work with the double c8U&2) of
the kinematic groug O (3). With the five-body problem, we also find it useful to work with
the double cover of the kinematic group. In this case, the kinematic grofip {4) and its
double coverisU (2) x SU (2). Inthis section we give an explicit realization of the projection
fromSU(2) x SU((2) to SO (4).

First, we introduce the functiog which maps a complex number into a corresponding
2 x 2 real matrix. Explicitly,

. a —b
g(a+|b):[ b a4 ] (5.1

wherea andb are real numbers. The functignis real linear and preserves multiplication.
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Specifically, it is straightforward to verify the following identities:

8(z1tazz) = g(za) +ag(z2) (5.2)
8(z1z2) = g(z1)g(z2) (5.3)
g(z}) = gz)" (5.4)
trg(z1) =z1+z] = 2Rezy (5.5)
detg(z1) = |21/ (5.6)
if 21 # 0then g(z;) = g(z) ™ (5.7)

wherez; andz; are complexz; is the complex conjugate af, anda is real. We defing
acting on & x k complex matrix to be thel2x 2k real matrix given by

ain —bi1 app —by
air+iby1 ap+iby ... biy  anr b ap
g ap1 tibyy ax+ibyy ... — azy —by1 ax —by ... . (5.8)
b1 a1 by ax

The following identities are analogous to equations (5.2)—(5.7):

g(M+aN) = g(M) +ag(N) (5.9)
g(MN) = g(M)g(N) (5.10)
g = gm)” (5.11)
trg(M) = tr M+ (tr M)* = 2 Re(tr M) (5.12)
detg(M) = | detm|? (5.13)
if M is invertible then g(M™1) = g(m)~?1 (5.14)

whereM andN are square complex matricés! is the Hermitian conjugate o, anda is a real
number. Except for equation (5.13), these identities are relatively straightforward to prove.
To prove equation (5.13), we first assume thas normal and invertible, which allows us to
write M = expX for some matrixX. Then,

detg(M) = det[g(expX)] = det[expg(X)] = exp[trg(X)] = exp[trX + (tr X)*]
= det(expX)[det(expX)]* = | detm|? (5.15)

where we have used equations (5.12) and (5.21) (which appears below) as well as the fact that
det exp= exp tr. We now consider an arbitrary (possibly non-normal) invertible mitaxd
note that it may be written as a product of normal matrices (using, for example, polar or principal
value decompositions). Using this fact and equation (5.10), we observe that equation (5.13)
holds forM as well. Having shown that equation (5.13) is valid for all invertible matrices,
analytic continuation shows that it is valid for all matrices.

We now definer from SU(2) x SU(2) to SO(4) by

m(Uz, Ug) = g(Up)Pg(Up)P” (5.16)
where
1 1 0 O
1 -1 1 0 o0
0 0 1 -1
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and whereJy, U, € SU(2). From equations (5.11)—(5.14), we observe #tat;) andg(U,)
are inS0O(4). SinceP is in 0(4) we verify thatr (Uz, Up) is in SO(4). To verify thatr is a
group homomorphism we must verify the following equation:

UV h UaVo ) = (U, U (Ve, Vo) 7t (5.18)

whereUs, Uz, V1, Vo € SU(2) are arbitrary. To prove equation (5.18), we first hypothesize
that

g(U) [Pg(VP"] = [Pg(V)P"] g(U) (5.19)

whereU, V € SU(2) are arbitrary. We postpone the proof of equation (5.19) temporarily in
order to show how it is used to prove equation (5.18). To this end, we have

UV h UaVy ) = UiV HPg(UaV, HPT = g(Un)g(V1) *Pg(U2)g (Vo) ~tPT
= g(U1g(V) [Pg(U2)PT ] [Pg(V2) 'PT]
= [g(UDPg(U)PT|[Pg(V2) P  g(V1) ']
= (U, Up)r(Vq, Vo)t (5.20)

where the first equality follows from the definition (5.16), the second from equations (5.10)
and (5.14), the third from inserting’ P = 1, the fourth from equation (5.19) and the final
equality again from equation (5.16).

We return now to prove equation (5.19). We find it convenient to work with the Lie
algebrasu(2) andso(4) of SU (2) andS O (4), respectively. We see from equation (5.11) that
if X € su(2), thatisX is a 2x 2 anti-Hermitian matrix, theg (X) € so(4), that is,g(X) is a
4 x 4 antisymmetric real matrix. Furthermore,

g(expX) = expg(X) (5.21)
Pexplg(X)]P" = exp[Pg(X)P’] (5.22)

where equation (5.21) follows from equations (5.9) and (5.10). TakirgexpX, V = expY,
equations (5.21) and (5.22) allow equation (5.19) to be re-expressed as

explg (X)] exp[Pg(Y)P'] = exp[Pg (Y)P"] exp[g(X)]. (5.23)
The above equation is valid so long as
[¢(X), Pg(Y)PT] =0 (5.24)

for arbitraryX, Y € su(2), where [, ] is the matrix commutator.

We prove equation (5.24) by using a basis®f2), which we choose to be the matrices
w;, i = 1,2, 3, given in equations (4.3)—(4.5). From the product rules equations (4.6)—(4.8),
this basis satisfies the Lie algebra relations

[wi, wj] =2 Z €ijkWr- (5-25)
k
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It is straightforward to compute the matricks= g(w;) andL; = Pg(w;)P7,

- 0 0 0 17
0O 0 -1 0
J1=g(w1) = o 1 0 0 (5.26)
| -1 0 0 0 |
T 0 0 -1 0 7
o 0 0 -1
J2 = glwz) = 1 0 0 0 (5.27)
. 0 1 O 0 |
- 0 1 0 07
-1 0 0 O
J3 = g(w3) = 0 0 0 -1 (5.28)
. 0 0 1 0 |
T 0 0 0 -—-1T7
0O 0 -1 0O
_ T _
L1 = Pg(w)P" = 0 1 0 0 (5.29)
. 1 0 O 0 |
ro0 0 -1 0
0O O 0 1
_ T _
Lz = Pg(w)P" = 1 0 0 0 (5.30)
. 0 -1 0 O
T 0 1 0 07
-1 0 0 O
_ T _
Ls=Pgl@a)P" =| o o § 1 (5.31)
. 0 0 -1 0 |
The matrices);, i = 1,2,3 andL;, i = 1, 2, 3 are a basis of the Lie algebra(4) and it is
straightforward to show that they satisfy the Lie algebra relations
[Ji, ;] = zzfi_/‘k\]k (5.32)
k
[L,‘, Lj] = Zzeijkl-k (533)
k
[3;,L,]=0. (5.34)

The above equations exhibit the well known fact that4) = su(2) & su(2). Since the
matricesJ; andL; span the space of matrices of the foptX) andPg(Y)PT, respectively
(X, Y € su(2)), equation (5.34) proves equation (5.24), from which follows equations (5.23),
(5.19) and (5.18). We have thus showro be a group homomorphism.

The mappingr has several important properties which we will use later. First, it follows
directly from the definition (5.16) that for arbitrary group elemetts U,) € SU (2) x SU (2),

7T(U]_, _UZ) = n(_Ula U2) = _n(ulv U2) (535)
7(—U1, —Uz) = (U, U2). (5.36)

Second, in light of equation (5.34), the definitionmotan be conveniently re-expressed using
the Lie algebra,

7 (EXPX1, eXPXo) = expg(Xy) + Pg(X2)PT]. (5.37)
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Since the matrice$ andL; form a basis of the Lie algebsa(4), the above equation shows
thatr is surjective. Howevetr is obviously not injective sinca (1,1) = 7 (—I, —I) = I. In
fact, (1, 1) and(—1, —1) are the only two elements U (2) x SU(2) whichmap td € SO (4).
To prove this we consider two arbitrary elemebits U, € SU(2), expressed in axis-angle
form as

U; = coSH1 | —Sinfyng - w (5.38)
Us = coSts | —Ssinfrnp - w (5.39)

whered,, 6, are rotation anglesyi, n, are rotation axes and = (w1, wz, wz). Then,

w(Ug, Up) = (C0SH,l — sinfny - J)(coshl — sinbony - L)
= C0SH1 C0SHsl — SiNh, c0SHo (111 - J)
— €0SP SiNby (1o - L) + sinfy Sinby(ny - J)(no - L) (5.40)

whereJ = (J1, J2, J3) andL = (L, Ly, L3). Itcan easily be verified thgk, J;, L;, J;L;} forms
a basis of all 4x 4 real matrices. Thus, if (Uy, U) = I then

cosf, costr, =1 (5.41)

sin#, cosf, = 0 (5.42)

€0sf sind, =0 (5.43)

sing;sind, =0 (5.44)
which only occurs if9; = 6, = 0 or6, = 6, = &, corresponding t&J; = U, = | or
U; = Uy = —I, respectively.

In summary, we have proved thatgiven by equation (5.16) is a two-to-one surjective
group homomorphism fromSU (2) x SU(2) to SO (4).

5.2. The double covers of the isotropy subgroups

For each isotropy subgrou we determine its double covsr= = ~1(S). Thatis we must find
the two elements U (2) x SU (2) which map to each element §f In light of equation (5.36),
these two elements are related by a minus sign, thatis,U,) € § and(—Uy, —Uy) € §
map to the same element sh Thus, the problem of determiningjreduces to finding only
one element irsU (2) x SU(2) which maps to each element$h

SinceZ, = {(l, 1), —(l, 1)} is obviously normal inS and(SU(2) x SU(2))/Z, = SO(4)
andS$/Z, = S, we apply theorem 3 to find

_SO@) _ (SUQ) x SU2)/Zz _ SU(2) x SU(2)

- i = i (5.45)
S S/Z, S

We will use this result extensively to determine the topology of the kinematic orbits. We
analyse each class in table 4 separately.

5.2.1. The class 3(i) of 3D asymmetric top€£onsidering the analysis of section 2, an element
K of S depends on the two matricagindB as shown in equation (2.13). Considering class 3(i)
for n = 5, the matrixB is simply the 1x 1 matrixB = 1. The matrixA must belong to the
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groupV, given by equation (2.23). Thus, the grofigontains the following matrices:

r1 0 0 07
0O -1 0 o0
E; = 0 0 -1 o (5.47)
L 0O 0 0 1 |
-1 0 0 07
0O 1 0 O
E, = 0 0 -1 0 (5.48)
. 0 0 0 1 |
-1 0 0 07
0O -1 0 O
Ez= 0 0 1 o0 (5.49)
L O 0 0 1 |
From equation (5.16) we see that(w;, w;) = J;L;, whereJ; and L; are given by
equations (5.26)—(5.31). By direct matrix multiplication, we find
7T((,()i, Ct),') = JiLi = E,'. (550)

Thus, havingA found one element §U(2) x SU(2) which maps to each element 8§f the
double cover is the eight-element group

S = {0, 1), (w1, w1), (w2, ®2), £(ws, w3)} = Vs. (5.51)

In the above, the tilde ovevg has a technical meaning which we now define.Hlfis an
arbitrary subgroup a$U (2), thenH is an isomorphic subgroup 6t (2) x SU(2) as shown
in equation (A.1). ThusS$ is isomorphic to the quaternion group in equation (4.2). Sifice
has the form off in equation (A.1), we apply theorem 2 from the appendix to find

3
FZMZSU(Z)XSU(Z)ngxS

Ve Ve

(5.52)

5.2.2. The class 3(ii) of 3D symmetric topd-or class 3(ii)B is again the &k 1 matrixB = 1.
The matrixA consists of a & 2 blockS € 0(2) and a 1x 1 block detS. Combining these
results into the single matrix, we see thaf consists of

S = Se 0 ={I,E1}{ [%’7?} SeS02 }
dets O

(5.53)

where in the second equality we have factosethto the product of two groups. Having
encountered the elements of the first factor earlier, we recallstliat) = | and (from
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equation (5.50)) that (w1, w1) = E;. Considering the second factor, we note

m(explbws), explws)) = exp(@(Js +Lz)) = exp

cosd sind
—sin2 cos?

0 1

-1 0 0

20

(5.54)

where we have used equations (5.37), (5.28) and (5.31). Equation (5.54) shows that the double
cover of the second factor in equation (5.53) is the group

A={U,UU € A}
whereA is the group
A = {explfw3)|0 < 0 < 21},

(5.55)

(5.56)

Note thatA = U (1) C SU(2). The double cover af is therefore

S=1{0,1, (@1, 01)} A= {(U,U)|U € B} =B

whereB is the group
B = {|, a)l}A.

(5.57)

(5.58)

A priori, it is perhaps not obvious tha#t is actually a group. To verify thak is indeed
closed under multiplication and inverses, the following identity is useful:

w1 eXpPHwz) o] = expllwiwsn]) = exp(—Ows)

(5.59)

which is derived from equations (4.6)—(4.9). When forming products and inverses of the
elements ofB, equation (5.59) allows ary; factors to be shifted to the left so that the final
result again has the form displayed in equation (5.58).

Since$ has the form of equation (A.1), we apply theorem 2 to find

L SUQ@xSU@ _ SUR xSU@

U@ (5.60)

S

=SU(2) x B

The quotientSU (2)/B is diffeomorphic taR P2. To prove this, we first consider the quotient
SU(2)/A = SU2)/U(1). ltis well known thatSU (2)/U (1) = S?. One way of seeing
this fact is to consider the action 617 (2) on R via the 3x 3 orthogonal matrices given in
equation (4.10). The orbit U (2) acting onz € R? is clearly the spher§?. The isotropy
subgroup of the vectat is the groupA of U (1) rotations about thé-axis. Theorem 1 thus

gives the desired result
SU(2) _ g
A

(5.61)

Furthermore, we note the following explicit identification between a right daet AU €
SU(2)/A and a unit vectof € S? (denoting a coset with bold square brackets),

[U] & 7 =R"2=—1tr(wUw3V)

(5.62)
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whereR is given by equation (4.10) and = (w1, w2, w3). We have placed the transpose
on R in order thatn be well defined for right cosets; observe that the right-hand side of
equation (5.62) is invariant under— exp(@ws)U.

Having computedsU (2)/A, we apply theorem 3 to compusd/(2)/B. With regard to
the notation of the theorem, we take= B, H = A andM = SU (2). We first must verify
thatA is normal inB. Proving this fact reduces to showing thqtexp(ewg)wI isin A foran
arbitrary exgbéws) € A. This fact, in turn, follows immediately from equation (5.59). Thas,
is normal inB andB/ A is a well defined group isomorphic #. According to theorem 3, the
non-identity elemenfw;] € B/A acts on[U] € SU(2)/A by [@1][U] = [w1V]. Identifying
[U] with n, the action ofw;] onn is

[wi]f = —3 trlw(@1V) w3(01V0)] = Str(wUTwsu) = A (5.63)

which follows from equations (4.6)—(4.9). Thus, the quoti&hZ, is R P?, and by theorem 3
we have the following identifications:

SU@R) SU@)/A  §?

— =RP2 (5.64)

B B/A 7o

Recalling equation (5.60), we find that
I =53 x RP2 (5.65)

5.2.3. The class 3(iii) of 3D spherical topsFor class 3(iii) B is again the X 1 matrixB = 1.
The matrixA can be any matrix it$ O (3). Thus, the grous is

S = A 1% acsom b (5.66)

0 1

To find the double cover of, we consider an arbitrary matrid € SU(2) expressed as
U = exp(n - w) for some vectomn = (n1, ns, n3). Then we find from equation (5.37) and
equations (5.26)—(5.31) that

7(U,U) = n(exp(n - w), exp(n-w)) =exp[n - (J + L)]. (5.67)

Furthermore, from equations (5.26)—(5.31), we see that

r 0 0 0 07
0O 0 -1 0O
Ji+L; =2 0 1 0 0 (5.68)
L 0 0 0 0 ]
0 0 -1 0 7
0O 0 0 ©O
o+l =2 1 0 0 0 (5.69)
o 0 0 0|
r o 1 0 O
-1 0 0 O
Jz3+Ll3=2 0 0 0 0 (5.70)
L 0o 0 0 o0
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Thus, the matrices; + L; generateS, and from equation (5.67) the double coversas

S={(U,VUeSUQ)}=E. (5.71)
Applying theorem 2, we have
_SU®@ X SUR) _SU® x SU@) _ SU@) x SU@) _ 3 (5.72)
SU(2)

5.2.4. The class 2(i) of planar asymmetric tops:or class 2(i), the matrices andB are,
respectively, i/, (as shown in equation (2.24)) asd2). These matrices must further satisfy
detAB = 1. For convenience, we switch the positionsAchndB in equation (2.13). That

is, we placeA in the lower right-hand block anél in the upper left-hand block. This switch

is equivalent to conjugating by a permutation and hence does not effect the topology of the
quotientSO(4)/S. With this modification, the isotropy subgroup is

B 0
S:
o]
_ B 0
—{l,El,_E27_E3}{ |: o 1 ]

where we have again factorédnto the product of two groups. Considering the elements in
the first factor, we may combine equations (5.35) and (5.50) to produce

Be O(2),AcV,detAB=1 }

Be SO } (5.73)

(w1, w1) = E1 (5.74)
(w2, —w2) = —E2 (5.75)
7(—ws, w3) = —Es. (5.76)

The second factor of equation (5.73) is identical to the second factor of equation (5.53), and
hence the double cover of the second factot igiven by equation (5.55). Thus, the double
cover of S is
={(, D), (01, @1), (W2, —w2), (—w3, w3)} A

= {1, D, (w2, —w) H(I, D), (w1, ®1)}A = {(I, ), (w2, —w2)} B (5.77)

whereB is given in equation (5.57).
We apply theorem 3 to determine the topology of the kinematic orbit, taking S,

H = BandM = SU(2) x SU(2). Using equations (4.6)—(4.9), itis straightforward to verify
that B is normal inS, and hencé/B i is a well defined group isomorphic %. The action of
the non-identity elemefjtoy, —w,] € S/B on[Uy, U] € (SU(2) x SU(2))/B is

[w2, —w2][U1, U] = [w2U1, —w2U3]. (5.78)
Using theorem 2, we previously showed th&lt/ (2) x SU (2))/ B is diffeomorphic taSU (2) x
(SU(2)/B). The diffeomorphism is given by equation (A.4). Using this diffeomorphism we
find that the action ofw,, —w,] € §/B on (Uy, [U2]) € SU(2) x (SU(2)/B) is

[w2, —w2](Uy, [U2]) = (—U1, [ — w2U3]) = (—Ug, [U2]) (5.79)
where the last equality follows from the fact thad, = wiws € B. (Be careful not to confuse
the bold square bracket notatipn] used for cosets a§U (2) x SU (2) with the (non-bold)
square bracket notation used for the matrix commutator.) From equation (5.79) we see that
the quotient ofSU (2) x (SU(2)/B) by S/B isRP3 x (SU(2)/B). Applying theorem 3 and
recalling equation (5.64), we find
SUR) x SU(2) (SU2) x SU(2)/B  SU(?2) x (SU(2)/B)

, = — = ~ =RP3 x RP?
S S/B S/B

I' =

(5.80)
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5.2.5. The class 2(ii) of planar symmetric topg-or class 2(ii), the matricessandB are both
in O(2) and satisfy deAB = 1. Thus, the isotropy subgroup is

s={ |55 aeco@ dema1}
0| B

v [ 8] resom | [512]

where we have factorefiinto three factors. The first two factors multiply to give the gréup
equation (5.53). Thus, the double cover of the first two factors is the ggampquation (5.57).
Considering the last factor of equation (5.81), we note

Be SO } (5.81)

m(expfws), exp(—hw3z)) = exp(f(Jz — L3)) = exp| 20

= (5.82)
cosd —sind
sin2 cos?d

where we used equations (5.37), (5.28) and (5.31). Thus, the double cover of the third factor
in equation (5.81) is the group

C ={U,uhHju e A} (5.83)

whereA is the group defined in equation (5.56). Therefore, the double coversofiven by
the product ofB andC,

§=BC ={(,1), (@1, 1)} AC = {(I,1), (1, 1)} D (5.84)
where we have used equation (5.57) and where
D = AC = {(U, Up)|Uy, Up € A} = U(1) x U(D). (5.85)

We apply theorem 3, witli; = S,H =D andM = SU(2) x SU(2), to determine the
topology of the kinematic orbit. Using equation (5.59), it is straightforward to verifyfhiat
normal inS, and hencé/ D is awell defined group isomorphic#. SinceD = U(1) x U (1),
we find

SUR) x SU(2)  SU@2)xSU[2)  SU(_2) y SU@2)

D T UMD xUQ A A

where we have used equation (5.61). From equation (5.63), the action of the non-trivial element
[w1, w1] € §/D on(ny, ny) € S2 x §? is shown to be

$2x §? (5.86)

[w1, w1](R1, N2) = (—ng, —72). (5.87)
With this understanding of the action @ on S x $2, we have

_SU@ xSU@) _ (SU@) x SU2))/D _ 8% x §?

r
S S/D Zs

(5.88)
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5.2.6. The class 1 of collinear shapesln section 3 we showed that for collinear shapes
I' =500 —1)/0(n —2) = RP" 2. Forn =5 this yieldsR P2 and no more need be said.
However, for completeness and analogy with the preceding cases, we show here how this result
also follows from equation (5.45).

Matrix B can be any matrix ir0(3) and matrixA is the 1x 1 matrixA = detB. As
in the analysis of class 2(i), we switch the positions of the blocks agontainingA andB.
Specifically, the isotropy subgroup is

S = 0 Be 0@

0 |dets

={I, -1} 0 BeSO® . (5.89)
0 1
Concerning the first factor, equation (5.35) shows
(=11 =—l (5.90)

The second factor is the same as the grégven in equation (5.66). Thus, the double cover
of the second factor is the groupgiven in equation (5.71) and the double coveSaé

S={U1, (-, D}E. (5.91)

We apply theorem 3 wittG = S, H = E, andM = SU(2) x SU(2). ltis trivial
to show thatZ is normal in S and henceS/E is a well defined group isomorphic ;.
Recall from equation (5.72) thgSU (2) x SU(2))/E = SU(2). The non-trivial element
[—1,1] € §/E mapqUy, Us] € (SU(2)xSU(2))/E into[—Us, U,]. Using the diffeomorphism
f:(SU) x SU(2))/E — SU(2) of equation (A.4), this results in the following action on
U e SU(2):

[—1,1Uu=-Uu. (5.92)
Thus, we find

_SU@) x SU@) _ (SU@) x SUR)/E _SU@2)

r ~
S S/E Z>

RP3. (5.93)

6. Conclusions

For the generat-body problem, we have expressed a kinematic orbit as the quotient of the
kinematic group by the isotropy subgroup of the shape in question. We have computed these
isotropy subgroups explicitly. For the three-, four- and five-body cases, we have represented
the kinematic orbits in terms of simple well studied spaces of low dimension. We have also
showed that the kinematic orbit of a collinear shap® 15~ for anyn.
The natural next step for us to take is an analysis of body-frame singularities>ds.

We envision such an analysis beginning, as in the case of the three- and four-body analysis
[1, 2], with a detailed study of the principal axis frame and its singularities. As in the previous
analysis, this would amount to finding the fundamental group of the asymmetric top region of
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shape space and then relating the paths (or more precisely the equivalence classes of paths) in
this group to the jumps in the principal axis frame.

In the three- and four-body problems, one can find a frame related to the principal axis
frame which has a smaller set of frame singularities. In particular, the frame jumps can be
completely eliminated. A natural question is whether such a frame exists¥ds. Extending
thisline of inquiry, another natural question is which frames have the smallest set of singularities
and what constraints are placed on one’s ability to move these singularities around. We believe
that the study of frames restricted to the kinematic orbits may shed some light on these issues.
For example, it would be useful to know, in the language of fibre bundles, wheth&ot®)
bundles defined over the kinematic orbits are trivial or not.
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Appendix. Theorems on Lie group quotients

We present three theorems regarding the actions of Lie groups on manifolds and the
corresponding quotient spaces. These results provide a rigorous mathematical foundation
for many of the steps presented in the bulk of the paper. The first result is a standard theorem
and is found, for example, in Bredon ([14], p 303, corollary 1.3).

Theorem 1. Let G be a compact Lie group acting smoothly on a smooth manifldThen
the orbit through a poink € M is diffeomorphic toG/H whereH is the isotropy subgroup
of G atx. (Thatis,H contains all elements @ which leavex fixed.)

The next result is useful for simplifying the descriptions of several manifolds appearing
in the five-body problem. It is similar to an exercise of Bredon ([14], p 113, exercise 9).

Theorem 2. LetG be a compact Lie group antl a Lie subgroup o6. LetH be the following
Lie subgroup oG x G:

H = {(h,h)|h € H}. (A.1)

Of course,H is trivially isomorphic toH. Then, the smooth manifold& x G)/H and
G x (G/H) are diffeomorphic.

Proof. Assuming thattG x G)/H andG/H are the right coset spaces, we introduce the
following notation for the right cosets:

[¢1. 8215 = H(g1,8) € (Gx G)/H g1, 82€G (A2)

lgly =HgeG/H g€G. (A.3)
We define a functionf : (G x G)/H — G x (G/H) acting on an arbitrarygs, g2l 5 €
(G x G)/H by

f(lgn g2 ) = (85 gn [e2ln)- (A.4)
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We assert that is a diffeomorphism. First, we verify thatis well defined on the coset space
by noting

f(Ihg1, hgal z) = ((hg2)*(hgy), [he2du) = (85 81, [g2lw) = f (g1, 821 7) (A.5)

whereh € H is arbitrary. Next, it is straightforward to verify that the following function is
well defined and that it is the inverse ¢f

g1 [g2m) = [g281. 82 (A.6)
where g1, g2 € G are arbitrary. Since botly and f~! are smooth, they are both
diffeomorphisms. a

The following theorem is a refinement of an exercise in Bredon ([14], p 67, exercise 1) to
the case of smooth actions. We omit the straightforward proof.

Theorem 3. Let G be a compact Lie group and a normal Lie subgroup of; so thatG/H
is itself a Lie group. LeG act smoothly upon a smooth manifdifl Assume that the isotropy
subgroups of this action are all conjugate to one another sothat: andM / H are themselves
smooth manifolds. The;,/ H has awell defined actiona¥/H given by gl y[x1x = [gx]#,

where[g]y € G/H and[x]y € M/H. Furthermore, the following diffeomorphism holds:
M M/H
M _ M/H (A7)
G G/H
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