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Abstract. The internal space for a molecule, atom, or othern-body system can be conveniently
parametrized by 3n−9 kinematic angles and three kinematic invariants. For a fixed set of kinematic
invariants, the kinematic angles parametrize a subspace, called a kinematic orbit, of then-body
internal space. Building on an earlier analysis of the three- and four-body problems, we derive the
form of these kinematic orbits (that is, their topology) for the generaln-body problem. The case
n = 5 is studied in detail, along with the previously studied casesn = 3, 4.

1. Introduction

The group of kinematic rotations, called here the kinematic group, is an important set of
symmetries for then-body kinetic energy. In fact, the kinematic group, to be defined precisely
below, is the largest (compact, connected) group of such symmetries acting on then-body
internal space. Not surprisingly then, the orbits (see appendix A of [1]) of the kinematic
group provide a useful decomposition of the internal space. It is the purpose of this paper to
analyse these orbits and to determine their topology. We have been motivated by molecular
applications, but the results are quite general and could be applied to anyn-body system with
rotational invariance, such as atoms or nuclei.

Although many reasons exist to study kinematic rotations and their orbits, our current
motivation derives from an interest in body-frame singularities and their implications for the
quantum dynamics ofn-body systems. In two previous papers [1, 2], body-frame singularities
in the three- and four-body problems were studied explicitly. The definition of body-frame
singularities, their inevitability, the flexibility one has in moving them and their importance
for quantum dynamics are all discussed in [1, 2]. A detailed study of frame singularities has
also been made by Pack [3]. Our earlier analysis of body-frame singularities (especially the
singularities of the principal axis and related frames) involved extensive use of kinematic
rotations. The present paper extends the analysis of kinematic rotations to arbitraryn and
provides the basis for a future discussion of frame singularities for the generaln-body problem.
Although this paper concentrates on kinematic orbits in their own right, for motivational
reasons, we provide a brief two-paragraph account of frame singularities, referring to [1–3]
for greater detail.

An early and necessary step in many quantumn-body computations is choosing a set of
body-fixed axes, that is, a body frame. The principal axis frame, in which the body-fixed axes
are aligned with the principal axes, is one common choice. The body frame is a function of the
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shape of the system, by which we mean the positions of the bodies relative to each other; the
shape may be parametrized by 3n−6 internal coordinates. As has been noted previously [1–3],
a body frame may fail to be a smooth function of shape, and thus there may be points in the
internal, or shape, space at which it is singular. (In this paper, the internal space and shape space
are synonymous.) For example, in the three-body problem, the principal axis frame is singular
at all oblate symmetric tops (among other shapes), and in the four-body problem, the principal
axis frame is singular at all symmetric tops (among other shapes). Body-frame singularities
have important consequences for the form of the quantum wavefunction: roughly speaking,
the wavefunction has singularities matching those of the body frame. An understanding of
body-frame singularities is therefore critical for understanding the singularities of then-body
wavefunction.

The location of the body-frame singularities in shape space depends on the choice of body
frame; by choosing different frames one can move these singularities about or possibly remove
them altogether (as is essentially the case for the three-body problem [2, 3]). Thus, for many
problems one can choose a frame whose singularities are outside the physically relevant region
of shape space. This is true of small vibration problems (about a non-collinear equilibrium)
in which the wavefunction is localized around an equilibrium shape. However, for scattering
states and delocalized bound states, it becomes harder to eliminate the singularities from the
region of interest. For certain regions, it becomes topologically impossible to remove them
completely and one must then understand their effects.

Though the study of kinematic orbits is developed here with the ultimate intent of
developing a deeper understanding of frame singularities, several other reasons motivate our
work. First, since the kinematic group is the largest (compact, connected) group of symmetries
(of the kinetic energy) acting on shape space, the kinematic orbits provide an important foliation
of shape space with which to study the kinetic energy operator. Furthermore, this foliation
suggests a convenient method of defining internal, or shape, coordinates [4–11]: three internal
coordinates are chosen to be kinematic invariants (for example, the three principal moments of
inertia), which label a particular kinematic orbit, and the remaining 3n−9 internal coordinates
are chosen to be kinematic angles, which parametrize the position along the kinematic orbit.
Defining these angles and properly specifying their ranges requires a clear understanding
of the topology of the orbits. Finally, certain large-amplitude internal motions, such as
pseudorotations, can be approximated by kinematic rotations. For such systems, it may be
convenient to restrict the region of physical interest to a single kinematic orbit.

The kinematic group is commonly viewed as the set of discrete transformations between
different conventions for Jacobi vectors. Here, however, we define the kinematic group to
be a continuous symmetry group, namelySO(n − 1), which contains these transformations.
The elements of the kinematic groupSO(n− 1) are called kinematic rotations to distinguish
them from the ordinary externalSO(3) rotations. (Sometimes the terminology ‘democracy
transformations’ and ‘democracy group’ is used.) Kinematic rotations act (in the active sense)
on the Jacobi vectors as shown in equation (2.3), from which one sees that they commute with
external rotations (as shown in equation (2.1)). Therefore, kinematic rotations do indeed have
a well defined action on the shape of ann-body system. It is the orbits of this action of the
kinematic rotations, for arbitraryn, which we compute here.

As examples of our general analysis, we specialize to the three- and four-body problems,
recovering the previously known results found in [1, 2, 12]. The kinematic orbits for the three-
and four-body cases do not exhibit the full range of diversity found in the generaln-body
problem and are thus somewhat special. For example, in the four-body problem the kinematic
orbits can be classified by whether a shape is an asymmetric top, a symmetric top or a spherical
top, a classification which does not hold in the generaln-body case. We therefore also specialize
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to the five-body problem, for which the results are not previously known. As with the three- and
four-body problems, the kinematic orbits for the five-body problem have particularly simple
forms. However, there are seven classes of kinematic orbits, which is representative of the
generaln-body case.

The approach and methods used in this paper are geometrical in nature. We assume
familiarity with the techniques of [1, 2] and some basic understanding of Lie groups, their
actions on manifolds, and the quotients by such actions. Appendix A of [1] provides a useful
review, as do many basic texts [13, 14].

The structure of the paper is as follows. Section 2 contains the principal derivations,
in which we determine the isotropy subgroup of the kinematic action on shape space. This
subgroup is related to the kinematic orbit via equation (2.5). The results of section 2 are
summarized in table 1. The results for arbitraryn are discussed briefly in section 3 where we
focus primarily on the collinear shapes. In section 4 we specialize the results of section 2 to the
three- and four-body problems, and these results are summarized in tables 2 and 3. Similarly, in
section 5, we specialize to the five-body problem. This requires substantially more work than
the three- and four-body cases which causes section 5 to constitute almost half of the paper.
The five-body results are summarized in table 4. Our conclusions are given in section 6. We
also include an appendix containing three important theorems on the actions of Lie groups.

2. The topology of kinematic orbits for arbitrary n

In the centre-of-mass frame, the configuration of ann-body system is parametrized byn− 1
(mass-weighted) Jacobi vectorsrsα, α = 1, . . . , n − 1. Here, thes subscript indicates that
the components ofrsα are referred to a space-fixed frame. Jacobi vectors are a standard topic
and we refer to the literature for more details on their definition and analysis [15, 16]. For
notational convenience we also introduce the 3× (n − 1) matrix Fs whose columns are the
Jacobi vectors. Explicitly,Fsiα = rsαi , i = 1, 2, 3,α = 1, . . . , n− 1, whereFsiα andrsαi are
the components ofFs andrsα, respectively.

An ordinary rotationQ ∈ SO(3) acts on the Jacobi vectors by standard multiplication on
the left

rsα 7→ Qrsα (2.1)

Fs 7→ QFs . (2.2)

We call such a rotation an external rotation to distinguish it from a kinematic rotation. A
kinematic rotationK ∈ SO(n− 1) acts by mixing up theα indices of the Jacobi vectorsrsα,

rsα 7→
∑
β

Kαβrsβ (2.3)

Fs 7→ FsK
T (2.4)

whereKαβ denotes the components ofK and T denotes the matrix transpose. Note that
kinematic rotations commute with all external rotations. Thus, the kinematic group has a well
defined action on the quotient of configuration spaceR3n−3 by the groupSO(3) of external
rotations. This quotient is called shape space, or the internal space, and its elements are called
shapes. A shape thus determines the relative positions of the bodies with respect to each other.
The purpose of this section is to find the topology of the orbits of the kinematic group acting
on shape space.

Considering a specific configurationFs with shapeq, the kinematic orbit0 throughq is
given by (that is, diffeomorphic to)

0 = SO(n− 1)

S
(2.5)
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whereS ⊂ SO(n− 1) is the isotropy subgroup of the kinematic action atq. See theorem 1 in
the appendix. The isotropy subgroupS consists of allK ∈ SO(n−1) which leave the shapeq
invariant. Our objective therefore is to determineS for each shapeq. Now, FsKT andFs have
the same shape if and only if they are related by a rotationQ ∈ SO(3). Thus, our objective is
to find all K ∈ SO(n− 1) such that there exists aQ ∈ SO(3) satisfying

FsK
T = QFs . (2.6)

We use the principal value decomposition to factorFs into

Fs = RΛHT (2.7)

whereR ∈ SO(3) andH ∈ SO(n− 1), andΛ is a 3× (n− 1) matrix of the form

Λ =
 λ1 0 0

0 λ2 0
0 0 λ3

n−4︷ ︸︸ ︷
0 0 0 . . .

0 0 0 . . .

0 0 0 . . .

. (2.8)

Due to the non-uniqueness of the principal value decomposition, there is no loss of generality
in assuming thatλ1, λ2 > 0 and that theλi ’s are ordered as

λ1 > λ2 > |λ3|. (2.9)

Using equation (2.7), we recast the problem of satisfying equation (2.6) into the following
problem: for whichK ∈ SO(n− 1) does there exist aQ ∈ SO(3) such that

QΛ(HT KH)T = Λ. (2.10)

The above equation shows that the isotropy subgroupS of the action of the kinematic group
on the shapeq is conjugate to the isotropy subgroup of the action of the kinematic group on
the shape of the configurationΛ. ReplacingS by a conjugate subgroup in equation (2.5) does
not affect the resulting manifold0 (up to a diffeomorphism). Thus, we assume without loss
of generality thatFs = Λ, and hence we look to find allK ∈ SO(n− 1) such that there exists
a Q ∈ SO(3) satisfying

QΛKT = Λ. (2.11)

The answer depends on the rank ofΛ, which we denote byd. The quantityd physically
represents the dimensionality of the shapeq. Thus, then-body collision hasd = 0, linear
shapes haved = 1, planar shapes haved = 2 and full three-dimensional (3D) shapes have
d = 3.

For all values ofd, Λ may be ‘block-diagonalized’ in the following manner:

Λ =

 Σ 0

0 0

 (2.12)

whereΣ is a d × d diagonal matrix and0 represents the zero matrices of the appropriate
dimensions. Equation (2.11) can only be satisfied ifQ andK are also block-diagonal, having
the forms

K =
[

A 0

0 B

]
(2.13)
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Q =
[

C 0

0 D

]
(2.14)

whereC andA ared×dmatrices,D is a(3−d)×(3−d)matrix andB is an(n−1−d)×(n−1−d)
matrix. Finding (special) orthogonal matricesK and Q satisfying equation (2.11) is then
equivalent to finding orthogonal matricesA, B, C, D satisfying

CΣAT = Σ (2.15)

detA detB = 1 (2.16)

detC detD = 1. (2.17)

The first equation follows from equation (2.11). The last two equations ensure thatK andQ
have a positive determinant.

It can be shown, due to the fact thatΣ is invertible andA,C ∈ O(d), that equation (2.15)
can only be solved ifC = A. This in turn allows equation (2.17) to be rewritten as

detA detD = 1. (2.18)

Recall thatD is of dimension 3−d. Therefore, ifd = 3, the matrixD is completely eliminated
from consideration, and equation (2.18) becomes simply

detA = 1. (2.19)

However, ifd < 3, then there always exists an orthogonal matrixD such that detD = detA.
Thus, equation (2.18) imposes no constraint whatsoever onA.

For the sake of clarity, we now summarize the problem at hand. For an arbitrary diagonal
d × d matrixΣ, with non-zero eigenvaluesλi , i = 1, . . . , d satisfying equation (2.9), we seek
all matricesK ∈ SO(n − 1) given by equation (2.13), where the orthogonald × d matrix A
and orthogonal(n− 1− d)× (n− 1− d) matrix B satisfy

AΣAT = Σ (2.20)

detA detB = 1 (2.21)

detA = 1 (required ford = 3 only). (2.22)

Note that we have eliminated all reference to the matrixQ.
To proceed we consider each of the values ofd = 0, 1, 2, 3 separately.

Cased = 3

From equations (2.21) and (2.22), we see that detA = detB = 1. Thus,B is an element
of SO(n − 4) and is independent ofA. To find the allowed values ofA, we consider three
subcases: (i) all of theλi ’s are distinct, (ii) two of theλi ’s are equal, the third is distinct, (iii) all
of theλi ’s are equal. Physically, these subcases correspond to shapes which are asymmetric
tops, symmetric tops and spherical tops, respectively.

Assume subcase (i). This is perhaps the most important class of shapes since three-
dimensional asymmetric tops are generic in shape space. From equation (2.20) and the fact
thatΣ is diagonal,A must be one of the four matrices in the groupV4, where

V4 =

 1 0 0

0 1 0
0 0 1

,
 1 0 0

0 −1 0
0 0 −1

,
 −1 0 0

0 1 0
0 0 −1

,
 −1 0 0

0 −1 0
0 0 1

.
(2.23)
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The groupV4 is called the viergruppe. It played a critical role in earlier analysis of the four-
body problem [1, 12]; we will reproduce part of this earlier analysis in section 4. Thus,K lives
in a subgroup ofSO(n − 1) isomorphic toV4 × SO(n − 4). The groupV4 × SO(n − 4) is
therefore the isotropy subgroupS for three-dimensional asymmetric tops.

Assume subcase (ii). SinceΣ is diagonal with two equal eigenvalues,A must be block-
diagonal, with a 2×2 block which can be any elementS ∈ O(2) and a 1×1 block which must
be detS to ensure the condition detA = 1. Thus,A lives in a subset ofSO(3) isomorphic to
O(2) and henceO(2)×SO(n−4) is the isotropy subgroupS for three-dimensional symmetric
tops.

Assume subcase (iii). Since all eigenvalues ofΣ are equal,Σ is proportional to the
identity. Hence,A can be any element ofSO(3), and henceSO(3)×SO(n−4) is the isotropy
subgroupS for three-dimensional spherical tops.

Cased = 2

We consider two subcases: (i)λ1 6= λ2, (ii) λ1 = λ2. Physically, these correspond to
asymmetric and symmetric tops, respectively.

Assume subcase (i). SinceΣ is diagonal with two different eigenvalues,A must be one
of the four matrices in the groupV4, where

V4 =
{[

1 0
0 1

]
,

[
1 0
0 −1

]
,

[ −1 0
0 1

]
,

[ −1 0
0 −1

]}
. (2.24)

This is another representation of the viergruppe in equation (2.23). For notational simplicity,
we use the same symbol for both groups; it will be clear from the context which group
is intended. SinceB ∈ O(n − 3), the matrixK is in V4 × O(n − 3). We still must
apply that remaining constraint given by equation (2.21). For this reason, we introduce the
notationV4 ×det +1O(n− 3) for all elements inV4 ×O(n− 3) with unit determinant. Thus,
V4×det +1O(n− 3) is the isotropy subgroupS for two-dimensional asymmetric tops.

Assume subcase (ii). SinceΣ is diagonal with two equal eigenvalues,Σ is proportional to
the identity. Thus the matrixA can be any element ofO(2), and henceO(2)×det +1O(n− 3)
is the isotropy subgroupS for planar symmetric tops.

Cased = 1

SinceA is in O(1), A is either 1 or−1. From equation (2.21),A = detB. Therefore,
B ∈ O(n− 2) completely determinesK. Thus,O(n− 2) is the isotropy subgroupS for linear
shapes.

Cased = 0

Since the dimension ofA is 0 here, there is really no matrixA to worry about. That is,K = B.
Thus,SO(n− 1) is the isotropy subgroupS for then-body collision.

3. Comments on the general results

We summarize the results from the preceding section in table 1 and comment on a few special
cases. First, as was to be expected, the kinematic orbit passing through then-body collision is
a single point0 = SO(n− 1)/SO(n− 1) = {0}.
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Table 1. Isotropy subgroups of the kinematic action on shape space.

Class Physical description of class Isotropy subgroupS dim(0)a

3(i) 3D asymmetric top V4 × SO(n− 4) 3n− 9
3(ii) 3D symmetric top O(2)× SO(n− 4) 3n− 10
3(iii) 3D spherical top SO(3)× SO(n− 4) 3n− 12
2(i) Planar asymmetric top V4 ×det +1O(n− 3) 2n− 5
2(ii) Planar symmetric top O(2)×det +1O(n− 3) 2n− 6
1 Linear shape O(n− 2) n− 2
0 n-body collision SO(n− 1) 0

a 0 = kinematic orbit= SO(n− 1)/S.

A more interesting case is that of the collinear shapes. It is a well known fact that

SO(k + 1)

O(k)
= RP k (3.1)

whereRP k is the k-dimensional real projective space (k > 1). The k-dimensional real
projective space is the space of lines inRk+1. It may also be viewed as thek-dimensional
sphereSk with antipodal points identified. A quick proof of equation (3.1) can be given with
the aid of theorem 1, taking

M = RP k = {{ê,−ê}|ê = (ê1, . . . , êk+1) ∈ Sk ⊂ Rk+1
}

(3.2)

and G = SO(k + 1). A matrix K ∈ SO(k + 1) maps {ê,−ê} into {Kê,−Kê}. If
ê = (1, 0, . . . ,0), then one can see that the isotropy subgroup of{ê,−ê} is H = O(k).
(In fact,H is exactly the same representation ofO(k), k = n − 2, discussed above for the
cased = 1.) Since the orbit of the action ofSO(k + 1) on RP k is the entire spaceRP k,
equation (3.1) follows from theorem 2 of the appendix.

Applying equation (3.1), we see that the kinematic orbit of a collinear shape is

0 = SO(n− 1)

O(n− 2)
= RPn−2. (3.3)

For the four-body problem (in three dimensions) the two-fragment exit channels can be
visualized as seven pairs of antipodal points onS2 or, equivalently, seven points onRP 2

[1, 17]. Kinematic angles between these points were computed explicitly in [17]. These results
were based on the understanding thatRP 2 is the kinematic orbit for collinear shapes in the
four-body problem†. (The interest in collinear shapes stems from the fact that a two-fragment
state becomes more and more collinear as the separation between the fragments increases.)
The four-body work was an extension of well known results for the three-body problem (in
three dimensions) in which the two-fragment exit channels can be visualized as three points
on a circleS1 = RP 1 with certain kinematic angles between them. The result presented in
equation (3.3) shows that, in general, the two-fragment exit channels can be viewed as points
on RPn−2, or equivalently, pairs of antipodal points onSn−2. (Some quick combinatorics
gives the number of points onRPn−2 to be 2n−1 − 1.) Of course, this is only a topological
result, and we say nothing about the values of the kinematic angles between such points.

† More precisely, the analysis of [17] is based on the fact thatS2 is the kinematic orbit for shapes in the one-dimensional
four-body problem. We ignore the one-dimensionaln-body problem in this paper.
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4. The three- and four-body problems

We specialize the preceding analysis to the three- and four-body problems. These cases have
been studied previously [1, 2, 12]. The present analysis serves both as a check on the general
results in section 2 and as practice for the five-body problem.

We begin with the three-body problemn = 3. In the analysis of section 2 we assumed
for convenience thatn > 4. However, by closely examining this analysis, one sees that
the results presented in table 1 are also valid forn = 3, so long as one ignores the
nonsensical results for the three-dimensional classes 3(i)–(iii). For classes 2(i) and (ii), the
factorO(n − 3) = O(0) of S is to be ignored. Thus, the isotropy subgroup of class 2(i) is
the two-element groupS = Z2 consisting of those elements ofV4 in equation (2.24) with unit
determinant. Similarly, the isotropy subgroup of class 2(ii) isSO(2). For class 1, the isotropy
subgroup isS = O(1) = {+1,−1} = Z2. These results are summarized in table 2.

Table 2. Isotropy subgroups and kinematic orbits for the three-body problem.

Class Physical description of classS dim(0) 0a

2(i) Planar asymmetric top Z2 1 S1

2(ii) Planar symmetric top SO(2) 0 {0}
1 Linear shape Z2 1 S1

0 Three-body collision SO(2) 0 {0}
a 0 = kinematic orbit= SO(2)/S.

Since the kinematic groupSO(2) is particularly simple, the topology of the kinematic
orbits may be presented in a more direct and illuminating form than the quotientSO(2)/S.
These forms are recorded in the rightmost column of table 2. For the three-body problem,
we can provide a convenient picture of the kinematic rotations which explains why the
kinematic orbits have the topologies that they do. The three-body shape space is conveniently
parametrized by three internal coordinates(w1, w2, w3) with ranges−∞ < w1, w2 < ∞,
0 6 w3 < ∞. The kinematic rotations act on shape space via standardSO(3) matrices
rotating about thew3-axis. It so happens that thew3-axis consists of the planar (non-collinear)
symmetric tops as well as the three-body collision. Thus, the kinematic orbits of these shapes
contain a single point, whereas the kinematic orbits of all other shapes are circles about the
w3-axis.

Turning to the four-body problem, we specialize the entries of table 1 forn = 4 and display
the results in table 3. For classes 3(i)–(iii) we ignore the factorSO(n − 4) = SO(0). For
classes 2(i) and (ii), the factorO(n− 3) reduces toO(1) = {+1,−1}. Since the choice of +1
or−1 inO(1) is fixed by the det= +1 constraint, the isotropy subgroup for classes 2(i) and (ii)
areV4 andO(2), respectively. An interesting observation is that the results for the four-body
problem are classified solely on the basis of the symmetries of the moment-of-inertia tensor.
That is, the topology of the kinematic orbit depends only on whether a shape is a spherical,
symmetric, or asymmetric top. (This fact is not true forn = 3 orn > 5.)

In the final column of table 3, we have again represented the topologies of the kinematic
orbits in a more direct and illuminating form than simply the quotientSO(3)/S. We have
already explained in section 3, how the equalitySO(3)/O(2) = RP 2 comes about. Thus, the
only orbit which requires special attention here is

0 = SO(3)

V4
= SU(2)

V8
= S3

V8
. (4.1)
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Table 3. Isotropy subgroups and kinematic orbits for the four-body problem.

Class Physical description of classS dim(0) 0a

3(i) 3D asymmetric top V4 3 S3/V8

3(ii) 3D symmetric top O(2) 2 RP 2

3(iii) 3D spherical top SO(3) 0 {0}
2(i) Planar asymmetric top V4 3 S3/V8

2(ii) Planar symmetric top O(2) 2 RP 2

1 Linear shape O(2) 2 RP 2

0 Four-body collision SO(3) 0 {0}
a 0 = kinematic orbit= SO(3)/S.

HereV8 is an eight-element subgroup ofSU(2)

V8 = {±I,±ω1,±ω2,±ω3} (4.2)

whereωi = −iσi , i = 1, 2, 3, and theσi ’s are the usual Pauli matrices. Explicitly,

ω1 = −iσ1 =
[

0 −i
−i 0

]
(4.3)

ω2 = −iσ2 =
[

0 −1
1 0

]
(4.4)

ω3 = −iσ3 =
[ −i 0

0 i

]
. (4.5)

The matricesωi satisfy

ω1ω2 = −ω2ω1 = ω3 (4.6)

ω2ω3 = −ω3ω2 = ω1 (4.7)

ω3ω1 = −ω1ω3 = ω2 (4.8)

ω
†
i = ω−1

i = −ωi. (4.9)

These product rules show thatV8 is the quaternion group. To prove equation (4.1) we recall
some basic facts aboutSO(3). First, SU(2) is the double cover ofSO(3), and we denote
the projection byπ : SU(2) → SO(3). The kernel ofπ is Z2 = {I,−I} and hence
SO(3) = SU(2)/Z2. If R = π(U) for someU ∈ SU(2), thenR can be given explicitly
by

Rij = − 1
2 tr(ωiUωjU

†) (4.10)

whereRij , i, j = 1, 2, 3, are the components ofR. Using the product rules equations (4.6)–
(4.9) and equation (4.10), one can verify thatπ(V8) = V4 given in equation (2.23), and hence
V4 = V8/Z2. We now employ theorem 3 from the appendix, withG = V8,H = Z2 = {I,−I},
M = SU(2). (It is trivial to verify thatZ2 is normal inV8.) Hence, equation (A.7) yields

SO(3)

V4
= SU(2)/Z2

V8/Z2
= SU(2)

V8
= S3

V8
(4.11)

where we recall thatSU(2) is diffeomorphic to the three-dimensional sphereS3.
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Table 4. Isotropy subgroups and kinematic orbits for the five-body problem.

Class Physical description of classS dim(0) 0a

3(i) 3D asymmetric top V4 6 S3 × (S3/V8)

3(ii) 3D symmetric top O(2) 5 S3 × RP 2

3(iii) 3D spherical top SO(3) 3 S3

2(i) Planar asymmetric top V4 ×det +1O(2) 5 RP 3 × RP 2

2(ii) Planar symmetric top O(2)×det +1O(2) 4 (S2 × S2)/Z2

1 Linear shape O(3) 3 RP 3

0 Five-body collision SO(4) 0 {0}
a 0 = kinematic orbit= SO(4)/S.

5. The five-body problem

The entries of table 1 are specialized for the five-body problem,n = 5, and displayed in table 4.
As with the three- and four-body cases, we also represent the topology of the kinematic orbits
in a more direct and illuminating form than the original quotient0 = SO(4)/S.

Before deriving the results in table 4, we make a few observations. First, for all classes but
2(ii) we present the kinematic orbits as products of well studied two- and three-dimensional
manifolds. In fact, all of these simpler manifolds already appear in the four-body problem,
either as kinematic orbits or as the group manifoldSO(3) = RP 3. One obvious advantage of
such a simple description of the topologies of these spaces is that it simplifies the introduction
of kinematic angles or some other parametrization of the orbits. For example, in the case of
a 3D asymmetric top, we may introduce six kinematic angles by taking three to be standard
Euler angles onS3 = SU(2) and three to be Euler angles onS3/V8. The ranges of the latter
three angles must be carefully restricted to account for the fact thatS3/V8 is only one-eighth
the size ofS3. A discussion of the ranges of such angles has already been given in the context
of the four-body problem [11, 12, 18, 19]. Of course, the spaceS3/V8 can be parametrized in
various other ways, such as the convenient coordinatesτ = (τ1, τ2, τ3) suggested by Reinsch
[1, 20].

It is interesting to note that the kinematic orbit of a collinear shape isRP 3 = SO(3). A
point on such an orbit (such as one of the two-fragment exit channels discussed in section 3) can
therefore be identified with a rotation matrix and may, in turn, be parametrized by one of the
many standard parametrizations ofSO(3) (Euler angles, axis-angle variables, Cayley–Klein
parameters, etc).

We proceed now to derive the results of table 4.

5.1. The projectionπ from SU(2)× SU(2) to SO(4)

With the four-body problem, we have found it useful to work with the double coverSU(2) of
the kinematic groupSO(3). With the five-body problem, we also find it useful to work with
the double cover of the kinematic group. In this case, the kinematic group isSO(4) and its
double cover isSU(2)×SU(2). In this section we give an explicit realization of the projection
from SU(2)× SU(2) to SO(4).

First, we introduce the functiong which maps a complex number into a corresponding
2× 2 real matrix. Explicitly,

g(a + ib) =
[
a −b
b a

]
(5.1)

wherea andb are real numbers. The functiong is real linear and preserves multiplication.
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Specifically, it is straightforward to verify the following identities:

g(z1 + az2) = g(z1) + ag(z2) (5.2)

g(z1z2) = g(z1)g(z2) (5.3)

g(z∗1) = g(z1)
T (5.4)

tr g(z1) = z1 + z∗1 = 2 Rez1 (5.5)

detg(z1) = |z1|2 (5.6)

if z1 6= 0 then g(z−1
1 ) = g(z1)

−1 (5.7)

wherez1 andz2 are complex,z∗1 is the complex conjugate ofz1, anda is real. We defineg
acting on ak × k complex matrix to be the 2k × 2k real matrix given by

g


 a11 + ib11 a12 + ib12 . . .

a21 + ib21 a22 + ib22 . . .

...
...

. . .


 =


a11 −b11 a12 −b12 . . .

b11 a11 b12 a12 . . .

a21 −b21 a22 −b22 . . .

b21 a21 b22 a22 . . .

...
...

...
...

. . .

. (5.8)

The following identities are analogous to equations (5.2)–(5.7):

g(M + aN) = g(M) + ag(N) (5.9)

g(MN) = g(M)g(N) (5.10)

g(M†) = g(M)T (5.11)

tr g(M) = tr M + (tr M)∗ = 2 Re(tr M) (5.12)

detg(M) = |detM|2 (5.13)

if M is invertible then g(M−1) = g(M)−1 (5.14)

whereM andN are square complex matrices,M† is the Hermitian conjugate ofM, anda is a real
number. Except for equation (5.13), these identities are relatively straightforward to prove.
To prove equation (5.13), we first assume thatM is normal and invertible, which allows us to
write M = expX for some matrixX. Then,

detg(M) = det[g(expX)] = det[expg(X)] = exp[trg(X)] = exp[trX + (tr X)∗]
= det(expX)[det(expX)]∗ = |detM|2 (5.15)

where we have used equations (5.12) and (5.21) (which appears below) as well as the fact that
det exp= exp tr. We now consider an arbitrary (possibly non-normal) invertible matrixM and
note that it may be written as a product of normal matrices (using, for example, polar or principal
value decompositions). Using this fact and equation (5.10), we observe that equation (5.13)
holds forM as well. Having shown that equation (5.13) is valid for all invertible matrices,
analytic continuation shows that it is valid for all matrices.

We now defineπ from SU(2)× SU(2) to SO(4) by

π(U1,U2) = g(U1)Pg(U2)P
T (5.16)

where

P = 1√
2


1 1 0 0
−1 1 0 0
0 0 1 1
0 0 1 −1

 ∈ O(4) (5.17)
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and whereU1,U2 ∈ SU(2). From equations (5.11)–(5.14), we observe thatg(U1) andg(U2)

are inSO(4). SinceP is inO(4) we verify thatπ(U1,U2) is in SO(4). To verify thatπ is a
group homomorphism we must verify the following equation:

π(U1V−1
1 ,U2V−1

2 ) = π(U1,U2)π(V1,V2)
−1 (5.18)

whereU1,U2,V1,V2 ∈ SU(2) are arbitrary. To prove equation (5.18), we first hypothesize
that

g(U)
[
Pg(V)PT

] = [Pg(V)PT ] g(U) (5.19)

whereU,V ∈ SU(2) are arbitrary. We postpone the proof of equation (5.19) temporarily in
order to show how it is used to prove equation (5.18). To this end, we have

π(U1V−1
1 ,U2V−1

2 ) = g(U1V−1
1 )Pg(U2V−1

2 )PT = g(U1)g(V1)
−1Pg(U2)g(V2)

−1PT

= g(U1)g(V1)
−1
[
Pg(U2)P

T
] [

Pg(V2)
−1PT

]
= [g(U1)Pg(U2)P

T
] [

Pg(V2)
−1PT g(V1)

−1
]

= π(U1,U2)π(V1,V2)
−1 (5.20)

where the first equality follows from the definition (5.16), the second from equations (5.10)
and (5.14), the third from insertingPT P = I, the fourth from equation (5.19) and the final
equality again from equation (5.16).

We return now to prove equation (5.19). We find it convenient to work with the Lie
algebrassu(2) andso(4) of SU(2) andSO(4), respectively. We see from equation (5.11) that
if X ∈ su(2), that isX is a 2× 2 anti-Hermitian matrix, theng(X) ∈ so(4), that is,g(X) is a
4× 4 antisymmetric real matrix. Furthermore,

g(expX) = expg(X) (5.21)

P exp[g(X)]PT = exp[Pg(X)PT ] (5.22)

where equation (5.21) follows from equations (5.9) and (5.10). TakingU = expX,V = expY,
equations (5.21) and (5.22) allow equation (5.19) to be re-expressed as

exp[g(X)] exp[Pg(Y)PT ] = exp[Pg(Y)PT ] exp[g(X)]. (5.23)

The above equation is valid so long as

[g(X),Pg(Y)PT ] = 0 (5.24)

for arbitraryX,Y ∈ su(2), where [, ] is the matrix commutator.
We prove equation (5.24) by using a basis ofsu(2), which we choose to be the matrices

ωi , i = 1, 2, 3, given in equations (4.3)–(4.5). From the product rules equations (4.6)–(4.8),
this basis satisfies the Lie algebra relations

[ωi, ωj ] = 2
∑
k

εijkωk. (5.25)
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It is straightforward to compute the matricesJi = g(ωi) andLi = Pg(ωi)PT ,

J1 = g(ω1) =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 (5.26)

J2 = g(ω2) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 (5.27)

J3 = g(ω3) =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 (5.28)

L1 = Pg(ω1)P
T =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 (5.29)

L2 = Pg(ω2)P
T =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 (5.30)

L3 = Pg(ω3)P
T =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

. (5.31)

The matricesJi , i = 1, 2, 3 andLi , i = 1, 2, 3 are a basis of the Lie algebraso(4) and it is
straightforward to show that they satisfy the Lie algebra relations

[Ji , Jj ] = 2
∑
k

εijkJk (5.32)

[Li , Lj ] = 2
∑
k

εijkLk (5.33)

[Ji , Lj ] = 0. (5.34)

The above equations exhibit the well known fact thatso(4) = su(2) ⊕ su(2). Since the
matricesJi andLi span the space of matrices of the formg(X) andPg(Y)PT , respectively
(X,Y ∈ su(2)), equation (5.34) proves equation (5.24), from which follows equations (5.23),
(5.19) and (5.18). We have thus shownπ to be a group homomorphism.

The mappingπ has several important properties which we will use later. First, it follows
directly from the definition (5.16) that for arbitrary group elements(U1,U2) ∈ SU(2)×SU(2),

π(U1,−U2) = π(−U1,U2) = −π(U1,U2) (5.35)

π(−U1,−U2) = π(U1,U2). (5.36)

Second, in light of equation (5.34), the definition ofπ can be conveniently re-expressed using
the Lie algebra,

π(expX1, expX2) = exp[g(X1) + Pg(X2)P
T ]. (5.37)
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Since the matricesJi andLi form a basis of the Lie algebraso(4), the above equation shows
thatπ is surjective. However,π is obviously not injective sinceπ(I, I) = π(−I,−I) = I. In
fact,(I, I) and(−I,−I) are the only two elements ofSU(2)× SU(2) which map toI ∈ SO(4).
To prove this we consider two arbitrary elementsU1,U2 ∈ SU(2), expressed in axis-angle
form as

U1 = cosθ1 I− sinθ1 n̂1 · ω (5.38)

U2 = cosθ2 I− sinθ2 n̂2 · ω (5.39)

whereθ1, θ2 are rotation angles,̂n1, n̂2 are rotation axes andω = (ω1, ω2, ω3). Then,

π(U1,U2) = (cosθ1I− sinθ1n̂1 · J)(cosθ2I− sinθ2n̂2 · L)
= cosθ1 cosθ2I− sinθ1 cosθ2(n̂1 · J)
− cosθ1 sinθ2(n̂2 · L) + sinθ1 sinθ2(n̂1 · J)(n̂2 · L) (5.40)

whereJ = (J1, J2, J3) andL = (L1, L2, L3). It can easily be verified that{I, Ji , Li , JiLj } forms
a basis of all 4× 4 real matrices. Thus, ifπ(U1,U2) = I then

cosθ1 cosθ2 = 1 (5.41)

sinθ1 cosθ2 = 0 (5.42)

cosθ1 sinθ2 = 0 (5.43)

sinθ1 sinθ2 = 0 (5.44)

which only occurs ifθ1 = θ2 = 0 or θ1 = θ2 = π , corresponding toU1 = U2 = I or
U1 = U2 = −I, respectively.

In summary, we have proved thatπ given by equation (5.16) is a two-to-one surjective
group homomorphism fromSU(2)× SU(2) to SO(4).

5.2. The double covers of the isotropy subgroups

For each isotropy subgroupS, we determine its double coverŜ = π−1(S). That is we must find
the two elements ofSU(2)×SU(2)which map to each element ofS. In light of equation (5.36),
these two elements are related by a minus sign, that is,(U1,U2) ∈ Ŝ and(−U1,−U2) ∈ Ŝ
map to the same element inS. Thus, the problem of determininĝS reduces to finding only
one element inSU(2)× SU(2) which maps to each element inS.

SinceZ2 = {(I, I),−(I, I)} is obviously normal inŜ and(SU(2)× SU(2))/Z2 = SO(4)
andŜ/Z2 = S, we apply theorem 3 to find

0 = SO(4)

S
= (SU(2)× SU(2))/Z2

Ŝ/Z2

= SU(2)× SU(2)
Ŝ

. (5.45)

We will use this result extensively to determine the topology of the kinematic orbits. We
analyse each class in table 4 separately.

5.2.1. The class 3(i) of 3D asymmetric tops.Considering the analysis of section 2, an element
K of S depends on the two matricesA andB as shown in equation (2.13). Considering class 3(i)
for n = 5, the matrixB is simply the 1× 1 matrixB = 1. The matrixA must belong to the
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groupV4 given by equation (2.23). Thus, the groupS contains the following matrices:

S = {I,E1,E2,E3} (5.46)

E1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (5.47)

E2 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 (5.48)

E3 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

. (5.49)

From equation (5.16) we see thatπ(ωi, ωi) = JiLi , where Ji and Li are given by
equations (5.26)–(5.31). By direct matrix multiplication, we find

π(ωi, ωi) = JiLi = Ei . (5.50)

Thus, having found one element inSU(2) × SU(2) which maps to each element ofS, the
double cover̂S is the eight-element group

Ŝ = {±(I, I),±(ω1, ω1),±(ω2, ω2),±(ω3, ω3)} = Ṽ8. (5.51)

In the above, the tilde overV8 has a technical meaning which we now define. IfH is an
arbitrary subgroup ofSU(2), thenH̃ is an isomorphic subgroup ofSU(2)× SU(2) as shown
in equation (A.1). Thus,̂S is isomorphic to the quaternion group in equation (4.2). SinceŜ

has the form ofH̃ in equation (A.1), we apply theorem 2 from the appendix to find

0 = SU(2)× SU(2)
Ŝ

= SU(2)× SU(2)
V8

= S3× S
3

V8
. (5.52)

5.2.2. The class 3(ii) of 3D symmetric tops.For class 3(ii),B is again the 1×1 matrixB = 1.
The matrixA consists of a 2× 2 blockS ∈ O(2) and a 1× 1 block detS. Combining these
results into the single matrixK, we see thatS consists of

S =




S 0

0
detS 0

0 1

 S ∈ O(2)


= {I,E1}

{ [
S 0

0 I

]
S ∈ SO(2)

}

(5.53)

where in the second equality we have factoredS into the product of two groups. Having
encountered the elements of the first factor earlier, we recall thatπ(I, I) = I and (from
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equation (5.50)) thatπ(ω1, ω1) = E1. Considering the second factor, we note

π ( exp(θω3), exp(θω3)) = exp(θ(J3 + L3)) = exp

2θ


0 1
−1 0

0

0 0





=


cos 2θ sin 2θ
− sin 2θ cos 2θ

0

0 I

 (5.54)

where we have used equations (5.37), (5.28) and (5.31). Equation (5.54) shows that the double
cover of the second factor in equation (5.53) is the group

Ã = {(U,U)|U ∈ A} (5.55)

whereA is the group

A = {exp(θω3)|06 θ < 2π}. (5.56)

Note thatA = U(1) ⊂ SU(2). The double cover ofS is therefore

Ŝ = {(I, I), (ω1, ω1)} Ã = {(U,U)|U ∈ B} = B̃ (5.57)

whereB is the group

B = {I, ω1}A. (5.58)

A priori, it is perhaps not obvious thatB is actually a group. To verify thatB is indeed
closed under multiplication and inverses, the following identity is useful:

ω1 exp(θω3)ω
†
1 = exp(θω1ω3ω

†
1) = exp(−θω3) (5.59)

which is derived from equations (4.6)–(4.9). When forming products and inverses of the
elements ofB, equation (5.59) allows anyω1 factors to be shifted to the left so that the final
result again has the form displayed in equation (5.58).

SinceŜ has the form of equation (A.1), we apply theorem 2 to find

0 = SU(2)× SU(2)
Ŝ

= SU(2)× SU(2)
B̃

= SU(2)× SU(2)
B

. (5.60)

The quotientSU(2)/B is diffeomorphic toRP 2. To prove this, we first consider the quotient
SU(2)/A = SU(2)/U(1). It is well known thatSU(2)/U(1) = S2. One way of seeing
this fact is to consider the action ofSU(2) onR3 via the 3× 3 orthogonal matrices given in
equation (4.10). The orbit ofSU(2) acting onẑ ∈ R3 is clearly the sphereS2. The isotropy
subgroup of the vector̂z is the groupA of U(1) rotations about thêz-axis. Theorem 1 thus
gives the desired result

SU(2)

A
= S2. (5.61)

Furthermore, we note the following explicit identification between a right coset[U] = AU ∈
SU(2)/A and a unit vector̂n ∈ S2 (denoting a coset with bold square brackets),

[U] ↔ n̂ = RT ẑ = − 1
2 tr(ωU†ω3U) (5.62)
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whereR is given by equation (4.10) andω = (ω1, ω2, ω3). We have placed the transpose
on R in order thatn̂ be well defined for right cosets; observe that the right-hand side of
equation (5.62) is invariant underU 7→ exp(θω3)U.

Having computedSU(2)/A, we apply theorem 3 to computeSU(2)/B. With regard to
the notation of the theorem, we takeG = B, H = A andM = SU(2). We first must verify
thatA is normal inB. Proving this fact reduces to showing thatω1 exp(θω3)ω

†
1 is inA for an

arbitrary exp(θω3) ∈ A. This fact, in turn, follows immediately from equation (5.59). Thus,A

is normal inB andB/A is a well defined group isomorphic toZ2. According to theorem 3, the
non-identity element[ω1] ∈ B/A acts on[U] ∈ SU(2)/A by [ω1][U] = [ω1U]. Identifying
[U] with n̂, the action of[ω1] on n̂ is

[ω1]n̂ = − 1
2 tr[ω(ω1U)†ω3(ω1U)] = 1

2 tr(ωU†ω3U) = −n̂ (5.63)

which follows from equations (4.6)–(4.9). Thus, the quotientS2/Z2 isRP 2, and by theorem 3
we have the following identifications:

SU(2)

B
= SU(2)/A

B/A
= S2

Z2
= RP 2. (5.64)

Recalling equation (5.60), we find that

0 = S3× RP 2. (5.65)

5.2.3. The class 3(iii) of 3D spherical tops.For class 3(iii),B is again the 1×1 matrixB = 1.
The matrixA can be any matrix inSO(3). Thus, the groupS is

S =


 A 0

0 1

 A ∈ SO(3)

. (5.66)

To find the double cover ofS, we consider an arbitrary matrixU ∈ SU(2) expressed as
U = exp(n · ω) for some vectorn = (n1, n2, n3). Then we find from equation (5.37) and
equations (5.26)–(5.31) that

π(U,U) = π ( exp(n · ω), exp(n · ω) ) = exp[n · (J +L)]. (5.67)

Furthermore, from equations (5.26)–(5.31), we see that

J1 + L1 = 2


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (5.68)

J2 + L2 = 2


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 (5.69)

J3 + L3 = 2


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

. (5.70)
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Thus, the matricesJi + Li generateS, and from equation (5.67) the double cover ofS is

Ŝ = {(U,U)|U ∈ SU(2)} = Ẽ. (5.71)

Applying theorem 2, we have

0 = SU(2)× SU(2)
Ŝ

= SU(2)× SU(2)
Ẽ

= SU(2)× SU(2)
SU(2)

= S3. (5.72)

5.2.4. The class 2(i) of planar asymmetric tops.For class 2(i), the matricesA andB are,
respectively, inV4 (as shown in equation (2.24)) andO(2). These matrices must further satisfy
detAB = 1. For convenience, we switch the positions ofA andB in equation (2.13). That
is, we placeA in the lower right-hand block andB in the upper left-hand block. This switch
is equivalent to conjugating by a permutation and hence does not effect the topology of the
quotientSO(4)/S. With this modification, the isotropy subgroup is

S =
{ [

B 0

0 A

]
B ∈ O(2),A ∈ V4, detAB = 1

}
= {I,E1,−E2,−E3}

{ [
B 0

0 I

]
B ∈ SO(2)

}
(5.73)

where we have again factoredS into the product of two groups. Considering the elements in
the first factor, we may combine equations (5.35) and (5.50) to produce

π(ω1, ω1) = E1 (5.74)

π(ω2,−ω2) = −E2 (5.75)

π(−ω3, ω3) = −E3. (5.76)

The second factor of equation (5.73) is identical to the second factor of equation (5.53), and
hence the double cover of the second factor isÃ given by equation (5.55). Thus, the double
cover ofS is

Ŝ = {(I, I), (ω1, ω1), (ω2,−ω2), (−ω3, ω3)} Ã
= {(I, I), (ω2,−ω2)}{(I, I), (ω1, ω1)}Ã = {(I, I), (ω2,−ω2)}B̃ (5.77)

whereB̃ is given in equation (5.57).
We apply theorem 3 to determine the topology of the kinematic orbit, takingG = Ŝ,

H = B̃ andM = SU(2)× SU(2). Using equations (4.6)–(4.9), it is straightforward to verify
thatB̃ is normal inŜ, and hencêS/B̃ is a well defined group isomorphic toZ2. The action of
the non-identity element[ω2,−ω2] ∈ Ŝ/B̃ on [U1,U2] ∈ (SU(2)× SU(2))/B̃ is

[ω2,−ω2][U1,U2] = [ω2U1,−ω2U2]. (5.78)

Using theorem 2, we previously showed that(SU(2)×SU(2))/B̃ is diffeomorphic toSU(2)×
(SU(2)/B). The diffeomorphism is given by equation (A.4). Using this diffeomorphism we
find that the action of[ω2,−ω2] ∈ Ŝ/B̃ on (U1, [U2]) ∈ SU(2)× (SU(2)/B) is

[ω2,−ω2](U1, [U2]) = (−U1, [ − ω2U2]) = (−U1, [U2]) (5.79)

where the last equality follows from the fact that−ω2 = ω1ω3 ∈ B. (Be careful not to confuse
the bold square bracket notation[ , ] used for cosets ofSU(2) × SU(2) with the (non-bold)
square bracket notation used for the matrix commutator.) From equation (5.79) we see that
the quotient ofSU(2)× (SU(2)/B) by Ŝ/B̃ isRP 3 × (SU(2)/B). Applying theorem 3 and
recalling equation (5.64), we find

0 = SU(2)× SU(2)
Ŝ

= (SU(2)× SU(2))/B̃
Ŝ/B̃

= SU(2)× (SU(2)/B)

Ŝ/B̃
= RP 3× RP 2.

(5.80)
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5.2.5. The class 2(ii) of planar symmetric tops.For class 2(ii), the matricesA andB are both
in O(2) and satisfy detAB = 1. Thus, the isotropy subgroup is

S =
{ [

A 0

0 B

]
A,B ∈ O(2), detAB = 1

}
= {I,E1}

{ [
A 0

0 I

]
A ∈ SO(2)

}{ [
I 0

0 B

]
B ∈ SO(2)

}
(5.81)

where we have factoredS into three factors. The first two factors multiply to give the groupS in
equation (5.53). Thus, the double cover of the first two factors is the groupB̃ in equation (5.57).
Considering the last factor of equation (5.81), we note

π ( exp(θω3), exp(−θω3)) = exp(θ(J3− L3)) = exp

2θ


0 0

0
0 −1
1 0





=


I 0

0
cos 2θ − sin 2θ
sin 2θ cos 2θ

 (5.82)

where we used equations (5.37), (5.28) and (5.31). Thus, the double cover of the third factor
in equation (5.81) is the group

C = {(U,U†)|U ∈ A} (5.83)

whereA is the group defined in equation (5.56). Therefore, the double cover ofS is given by
the product ofB̃ andC,

Ŝ = B̃C = {(I, I), (ω1, ω1)} ÃC = {(I, I), (ω1, ω1)}D (5.84)

where we have used equation (5.57) and where

D = ÃC = {(U1,U2)|U1,U2 ∈ A} = U(1)× U(1). (5.85)

We apply theorem 3, withG = Ŝ, H = D andM = SU(2) × SU(2), to determine the
topology of the kinematic orbit. Using equation (5.59), it is straightforward to verify thatD is
normal inŜ, and hencêS/D is a well defined group isomorphic toZ2. SinceD = U(1)×U(1),
we find

SU(2)× SU(2)
D

= SU(2)× SU(2)
U(1)× U(1) =

SU(2)

A
× SU(2)

A
= S2 × S2 (5.86)

where we have used equation (5.61). From equation (5.63), the action of the non-trivial element
[ω1, ω1] ∈ Ŝ/D on (n̂1, n̂2) ∈ S2 × S2 is shown to be

[ω1, ω1](n̂1, n̂2) = (−n̂1,−n̂2). (5.87)

With this understanding of the action ofZ2 onS2 × S2, we have

0 = SU(2)× SU(2)
Ŝ

= (SU(2)× SU(2))/D
Ŝ/D

= S2 × S2

Z2
. (5.88)
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5.2.6. The class 1 of collinear shapes.In section 3 we showed that for collinear shapes
0 = SO(n− 1)/O(n− 2) = RPn−2. Forn = 5 this yieldsRP 3 and no more need be said.
However, for completeness and analogy with the preceding cases, we show here how this result
also follows from equation (5.45).

Matrix B can be any matrix inO(3) and matrixA is the 1× 1 matrix A = detB. As
in the analysis of class 2(i), we switch the positions of the blocks inK containingA andB.
Specifically, the isotropy subgroup is

S =


 B 0

0 detB

 B ∈ O(3)


= {I,−I}


 B 0

0 1

 B ∈ SO(3)

. (5.89)

Concerning the first factor, equation (5.35) shows

π(−I, I) = −I. (5.90)

The second factor is the same as the groupS given in equation (5.66). Thus, the double cover
of the second factor is the group̃E given in equation (5.71) and the double cover ofS is

Ŝ = {(I, I), (−I, I)}Ẽ. (5.91)

We apply theorem 3 withG = Ŝ, H = Ẽ, andM = SU(2) × SU(2). It is trivial
to show thatẼ is normal in Ŝ and henceŜ/Ẽ is a well defined group isomorphic toZ2.
Recall from equation (5.72) that(SU(2) × SU(2))/Ẽ = SU(2). The non-trivial element
[−I, I] ∈ Ŝ/Ẽmaps[U1,U2] ∈ (SU(2)×SU(2))/Ẽ into [−U1,U2]. Using the diffeomorphism
f : (SU(2)× SU(2))/Ẽ → SU(2) of equation (A.4), this results in the following action on
U ∈ SU(2):

[ − I, I]U = −U. (5.92)

Thus, we find

0 = SU(2)× SU(2)
Ŝ

= (SU(2)× SU(2))/Ẽ
Ŝ/Ẽ

= SU(2)

Z2
= RP 3. (5.93)

6. Conclusions

For the generaln-body problem, we have expressed a kinematic orbit as the quotient of the
kinematic group by the isotropy subgroup of the shape in question. We have computed these
isotropy subgroups explicitly. For the three-, four- and five-body cases, we have represented
the kinematic orbits in terms of simple well studied spaces of low dimension. We have also
showed that the kinematic orbit of a collinear shape isRPn−2 for anyn.

The natural next step for us to take is an analysis of body-frame singularities forn > 5.
We envision such an analysis beginning, as in the case of the three- and four-body analysis
[1, 2], with a detailed study of the principal axis frame and its singularities. As in the previous
analysis, this would amount to finding the fundamental group of the asymmetric top region of
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shape space and then relating the paths (or more precisely the equivalence classes of paths) in
this group to the jumps in the principal axis frame.

In the three- and four-body problems, one can find a frame related to the principal axis
frame which has a smaller set of frame singularities. In particular, the frame jumps can be
completely eliminated. A natural question is whether such a frame exists forn > 5. Extending
this line of inquiry, another natural question is which frames have the smallest set of singularities
and what constraints are placed on one’s ability to move these singularities around. We believe
that the study of frames restricted to the kinematic orbits may shed some light on these issues.
For example, it would be useful to know, in the language of fibre bundles, whether theSO(3)
bundles defined over the kinematic orbits are trivial or not.

Acknowledgments

The authors gratefully acknowledge Professors Vincenzo Aquilanti and Simona Cavalli for
stimulating discussions motivating this paper and for their kind hospitality during which this
work was begun. The authors also greatly appreciate the thorough review of the manuscript
by Dr Michael Müller. The research in this paper was supported by the Engineering Research
Program of the Office of Basic Energy Sciences at the US Department of Energy under contract
no DE-AC03-76SF00098.

Appendix. Theorems on Lie group quotients

We present three theorems regarding the actions of Lie groups on manifolds and the
corresponding quotient spaces. These results provide a rigorous mathematical foundation
for many of the steps presented in the bulk of the paper. The first result is a standard theorem
and is found, for example, in Bredon ([14], p 303, corollary 1.3).

Theorem 1. LetG be a compact Lie group acting smoothly on a smooth manifoldM. Then
the orbit through a pointx ∈ M is diffeomorphic toG/H whereH is the isotropy subgroup
ofG at x. (That is,H contains all elements ofG which leavex fixed.)

The next result is useful for simplifying the descriptions of several manifolds appearing
in the five-body problem. It is similar to an exercise of Bredon ([14], p 113, exercise 9).

Theorem 2. LetG be a compact Lie group andH a Lie subgroup ofG. LetH̃ be the following
Lie subgroup ofG×G:

H̃ = {(h, h)|h ∈ H }. (A.1)

Of course,H̃ is trivially isomorphic toH . Then, the smooth manifolds(G × G)/H̃ and
G× (G/H) are diffeomorphic.

Proof. Assuming that(G × G)/H̃ andG/H are the right coset spaces, we introduce the
following notation for the right cosets:

[g1, g2]H̃ = H̃ (g1, g2) ∈ (G×G)/H̃ g1, g2 ∈ G (A.2)

[g]H = Hg ∈ G/H g ∈ G. (A.3)

We define a functionf : (G × G)/H̃ → G × (G/H) acting on an arbitrary[g1, g2]H̃ ∈
(G×G)/H̃ by

f ([g1, g2]H̃ ) = (g−1
2 g1, [g2]H ). (A.4)
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We assert thatf is a diffeomorphism. First, we verify thatf is well defined on the coset space
by noting

f ([hg1, hg2]H̃ ) = ((hg2)
−1(hg1), [hg2]H ) = (g−1

2 g1, [g2]H ) = f ([g1, g2]H̃ ) (A.5)

whereh ∈ H is arbitrary. Next, it is straightforward to verify that the following function is
well defined and that it is the inverse off :

f −1(g1, [g2]H ) = [g2g1, g2]H̃ (A.6)

where g1, g2 ∈ G are arbitrary. Since bothf and f −1 are smooth, they are both
diffeomorphisms. �

The following theorem is a refinement of an exercise in Bredon ([14], p 67, exercise 1) to
the case of smooth actions. We omit the straightforward proof.

Theorem 3. LetG be a compact Lie group andH a normal Lie subgroup ofG so thatG/H
is itself a Lie group. LetG act smoothly upon a smooth manifoldM. Assume that the isotropy
subgroups of this action are all conjugate to one another so thatM/GandM/H are themselves
smooth manifolds. Then,G/H has a well defined action onM/H given by[g]H [x]H = [gx]H ,
where[g]H ∈ G/H and[x]H ∈ M/H . Furthermore, the following diffeomorphism holds:

M

G
= M/H

G/H
. (A.7)
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